

The advancement of composite materials in future biomedical technologies

Wei Xia^{1*}, Song Chen², and Bin Li²

Composite materials are becoming essential in solving medical technology challenges due to their ability to integrate the functional advantages of ceramics, polymers, metals, and natural components. Unlike monolithic materials, composites offer tunability, making them central to emerging innovations in medical devices, tissue engineering, and drug delivery. This commentary explores how composites can pave the way for next-generation biomedical technologies and highlights current translational bottlenecks. It focuses on design strategies, translational bottlenecks, and key opportunities that will shape biomedical composite materials in the coming decade, rather than providing a comprehensive review.

The increasing complexity of clinical needs, such as minimally invasive interventions, adaptive implants, biomimetic/bio-functional scaffolds, and precise/controlled drug delivery, has highlighted the limitations of traditional monolithic biomaterials. Ceramics provide excellent stiffness and bioactivity, but are often brittle, making them unsuitable for load-bearing applications. Metals are ductile but lack biological functionality compared to bioceramics. Polymers provide flexibility and degradability, but often lack sufficient mechanical stability and have a negative impact due to the degradation residues. No single class of biomaterials can simultaneously satisfy the requirements of mechanical properties, biological integration, long-term reliability, controlled degradation, and multifunctionality.¹ Composite materials, by integrating two or more components at the micro- to nanoscale, can synergistically combine these properties. They are no longer alternatives to conventional biomaterials. Instead, they are increasingly viewed as essential options for future biomedical technologies, such as biodegradable orthopedic implants, hybrid tissue scaffolds, multi-phase drug carriers, and flexible electronic medical devices. However, despite extensive research efforts, the number of composite-based products that have reached clinical use is relatively small. This reflects not only scientific and engineering challenges but also persistent translational barriers.²

One of the advantages of composites is functional integration. Material components can be combined to achieve (i) high stiffness and controlled flexibility (e.g., ceramic/polymer hybrids), where ceramics provide load-bearing capability while the polymer phase dissipates strain, enabling implants that match the compliance of surrounding tissues; (ii) mechanical strength and bioactivity (e.g., metal/ceramic composites), in which the metal substrate offers structural strength and the ceramic promotes osteointegration, supporting long-term fixation; (iii) structural support and drug delivery (e.g., polymer/ceramic drug-loaded carriers), where the ceramic matrix maintains shape while the polymer phase controls drug release, allowing scaffolds to provide both mechanical and therapeutic functions; and (iv) electronic sensing and biocompatibility (e.g., polymer/carbon composites), where conductive material networks enable signal transmission and the polymer ensures tissue compatibility for wearable or implantable sensors.³ Such multifunctionality is crucial for implants and medical devices, which aim to fulfill multiple roles and adapt to dynamic biological environments. By jointly tailoring composition and macro/microstructure—through microstructural design, interfacial engineering, functional additives, and gradient structures—composites can be engineered to meet application-specific requirements.⁴

Beyond functional integration, composites offer tunability through control over volume fractions, phase distribution, porosity, surface chemistry, and degradation kinetics. This ability is critical in biomedical scenarios where “one-fits-all” materials are not realistic.⁵ For example, orthopedic implants require stiffness matching of the bone to avoid stress shielding, while nerve regeneration scaffolds require soft, anisotropic, and electrically conductive structures, and dental restorations need rigid, wear-resistant, esthetically pleasing composites with excellent bonding behavior. The ability to control composite properties makes them well-suited for personalized medicine and patient-specific devices.

¹Division of Applied Materials Science, Department of Materials Science and Engineering, Uppsala University, Uppsala, Sweden; ²Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Basic Medical Sciences, Interdisciplinary Innovation Center for Nanomedicine, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, China

***Corresponding author:**
Wei Xia,
wei.xia@angstrom.uu.se

How to cite this article:
Xia, W.; Chen, S.; Li, B.
The advancement of composite materials in future biomedical technologies.
Biomater Transl. 2025, 6(4), 483-485.

doi: 10.1233/bmt.25.00237

Advanced manufacturing, such as three-dimensional printing, has opened a new design space for composite structures. These technologies allow the construction of hierarchical architectures, gradient compositions, and multi-material assemblies that closely mimic native tissues. In many cases, only composite systems can fully exploit the potential of these technologies.⁶

Clinical demand is shifting from simple mechanical replacement to multifunctional bio-integration. Smart composite materials, which can sense physiological signals, respond to chemical, electrical, or mechanical stimuli, and adjust their structure or function accordingly, have attracted growing interest. For example, composites enable strain sensing in soft tissues, locally control ion and pH conditions, stimulus-triggered drug release, and piezoelectrically stimulate tissue regeneration. Such multifunctionality highlights the potential of composites in next-generation devices.⁷

Biological tissues, particularly interfaces such as hard/soft tissues, are naturally composite. They have hierarchical architectures and functional gradients that cannot be replicated by a single material. Composites can incorporate ceramic gradients, anisotropic matrix networks, multi-domain bioactive phases, and load-bearing and bioresponsive microenvironments.⁸ This biomimetic potential makes composites essential for regenerative medicine. Tissue engineering is advancing, and only composite strategies can effectively mimic the complexity of natural tissues.

Advanced drug delivery requires precise control over release kinetics, tissue targeting, and modulation of the local microenvironment. Composite drug carriers, such as polymer/ceramic, polymer/lipid, or nanoparticle-embedded matrices, can enable multi-stage release, stimuli-responsive behavior, and targeted tissue interactions. For bone regeneration, for example, polymer/ceramic composites can provide both osteoconductive scaffolding and therapeutic factor release, which a single material generally could not achieve efficiently.⁹

Future medical devices, such as resorbable bone screws, soft robotics, cardiac patches, and neural electrodes, require simultaneous mechanical integrity, biological compatibility, and functional performance.¹⁰ Composite systems enable independent tailoring of phase composition and architecture to achieve synergistic performance.

Despite the potential advantages of composite materials in biomedical applications, they face hurdles that hinder their clinical translation. These hurdles arise primarily from limited predictability in long-term behavior, resulting from the complexity of *in vivo* degradation, mechanical changes, and multi-phase interactions that occur. Furthermore, manufacturing standardization and scalability remain a significant challenge. Composite fabrication often involves multi-step, precision-dependent processes developed at the laboratory scale. When transitioning to good manufacturing practice processes, issues such as batch-to-batch variability and the cost of scaling multi-step processes must be considered. Regulatory pathways can further slow clinical translation because composite biomaterials do not fit neatly into existing categories developed for monolithic materials.

To accelerate the development and clinical translation of composite biomaterials, several priorities should be emphasized. Predictive, multiscale modeling of composite-tissue interactions is essential. This requires integrating factors such as mechanical behavior, chemical degradation, and immune response. Emerging artificial intelligence predictive tools can help achieve this.¹¹ Interface engineering could become a central design focus, as the interphases determine long-term reliability and can be enhanced through engineered chemical bonding, nanostructured interphases, and bioactive coatings.

Composite materials offer high potential for integrating mechanical strength, biological functionality, adjustable degradation, and smart responses. They are currently influencing the future of medical devices, regenerative medicine, and drug delivery. However, their true impact will depend on overcoming predictability, manufacturing, and regulatory barriers. With coordinated advances in interface engineering (e.g., ceramic-composite, metal-ceramic, ceramic-ceramic, and material-biomolecule interfaces), alongside improved predictive modeling, long-term performance characterization, and clinically aligned design, composite biomaterials are poised to drive biomedical innovation in the coming decades. Overall, these trends suggest that composite materials are becoming increasingly important in both biomedical research and clinical practice.

Acknowledgement

None.

Financial support

None.

Conflicts of interest statement

The authors declare no conflicts of interest.

Author contributions

Conceptualization: All authors; *Writing-original draft:* WX and SC; *Writing-review & editing:* All authors. All authors read and approved the final manuscript.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data

Not applicable.

Open-access statement

This is an open-access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build on the work noncommercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

References

1. Koons GL, Diba M, Mikos AG. Materials design for bone-tissue engineering. *Nat Rev Mater.* 2020;5(8):584-603.
doi: 10.1038/s41578-020-0204-2
2. Bai L, Su J. Converging technologies in biomaterial translational research. *Biomater Transl.* 2023;4(4):197-198.
doi: 10.12336/biomatertransl.2023.04.001
3. Dobrzańska-Mizera M, Dodda JM, Liu X, et al. Engineering of bioresorbable polymers for tissue engineering and drug delivery applications. *Adv Healthc Mater.* 2024;13(30):2401674.
doi: 10.1002/adhm.202401674
4. Nepal D, Kang S, Adstedt KM, et al. Hierarchically structured bioinspired nanocomposites. *Nat Mater.* 2023;22(1):18-35.
doi: 10.1038/s41563-022-01384-1
5. Li J, Wang C, Gao G, et al. MBG/PGA-PCL composite scaffolds provide highly tunable degradation and osteogenic features. *Bioact Mater.*

- 2022;15:53-67.
doi: 10.1016/j.bioactmat.2021.11.034
6. Qu H, Gao C, Liu K, et al. Gradient matters via filament diameter-adjustable 3D printing. *Nat Commun.* 2024;15(1):2930.
doi: 10.1038/s41467-024-47360-y
7. Wang W, Li K, Ma W, et al. Ultrasound-activated piezoelectric nanostickers for neural stem cell therapy of traumatic brain injury. *Nat Mater.* 2025;24:1137-1150.
doi: 10.1038/s41563-025-02214-w
8. Zhang N, Liu Z, Yu Q, et al. On the damage tolerance of bioinspired gradient composites with nacre-like architecture. *Adv Funct Mater.* 2025;35(14):2421057.
doi: 10.1002/adfm.202421057
9. Li Y, Ji L, Yu J, et al. Bioactive materials-mediated regulation of bone marrow microenvironment: Mechanistic insights and therapeutic potentials. *Adv Mater.* 2025:e11497.
doi: 10.1002/adma.202511497
10. Xu C, Ivanovski S. Clinical translation of personalized bioengineered implant scaffolds. *Nat Rev Bioeng.* 2025;3(5):390-407.
doi: 10.1038/s44222-024-00269-z
11. Liu D, Shi J, Ni Y, et al. Machine learning-assisted development of injectable, mechanically robust, and energy metabolism-modulating brushite cements. *Research (Wash D C).* 2025;8:0776.
doi: 10.34133/research.0776

Received: November 28, 2025

Revised: December 16, 2025

Accepted: December 17, 2025

Available online: December 30, 2025