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ABSTRACT

Pulmonary delivery systems are potential routes for numerous lung-related disease
treatments. The pulmonary delivery system can be utilised for local deposition and
systemic application due to its large surface area and high vascularisation within
the alveolar epithelium. This can lead to high permeability and bioavailability of
drugs. This review explores the utilisation of conventional nanostructured lipid
carriers in pulmonary delivery system applications. Due to their high entrapment
efficiency, stability, and biocompatibility, nanostructured lipid carriers can be used
as drug carriers through the pulmonary delivery system. Using nanostructured lipid
carriers can enhance drug deposition into deeper lungs, improve bioavailability
and efficacy, provide sustained and controlled release profiles of drugs, enhance
antimicrobial activity, enhance cellular uptake and penetration, and improve
bioavailability. However, conventional nanostructured lipid carriers have a major
drawback: low selectivity in target cells. The non-selective properties of these
carriers can lead to potential side effects, high toxicity, and reduced effectiveness.
Therefore, recent applications of functionalised nanostructured lipid carriers
have been evaluated through in vitro and in vivo studies to prove their safety and
effectiveness in pulmonary-targeted delivery. Nanostructured lipid carriers have
been functionalised to improve their selectivity and effectiveness. This review
discusses various functionalised nanostructured lipid carriers through surface
modification and their mechanism, including hydrophilic polymers, polysaccharides,
peptides and proteins, small molecules, surfactants, genes, antibodies, and
pH-sensitive polymers. Furthermore, key case studies in clinical translation are
examined to illustrate the practical applications and progress of these advanced
nanocarriers. This review also discusses the potential challenges in development,
including pulmonary-specific targeting, toxicity, and immunogenicity concerns, as
well as production and scalability challenges. Moreover, developing functionalised
nanocarriers presents new opportunities by highlighting effective strategies to
address existing challenges and accelerate their progression from experimental
research to clinical translation.
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1. Introduction

The pulmonary delivery system has been studied
for treating various lung-related diseases,
including asthma, chronic obstructive pulmonary
disease (COPD), cystic fibrosis, tuberculosis,
and lung cancer.! Pulmonary delivery can be

applied for local and systemic action due to the
large surface area, sufficient blood supply, and
high permeability of the alveolar epithelium.
Pulmonary delivery systems can also avoid
systemic metabolism and enzymatic degradation.
To deliver drugs into the lung, high deposition
and accumulation of drugs should be achieved
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at deeper or targeted lung sites. However, several biological
barriers can limit drug absorption into the lungs, such as
mucociliary clearance, pulmonary surfactant, and alveolar
macrophage clearance.”> Overcoming these barriers requires
advanced drug delivery strategies to prolong residence time,
enhance drug solubility, and facilitate penetration through the
lung’s defence mechanisms.

Nowadays, various inhalation technologies such as nebulisers,
pressurised metered-dose inhalers, and dry powder
inhalers are widely used for pulmonary drug delivery.’
However, these technologies still present several limitations,
significantly reducing their therapeutic efficacy and safety.
The main challenge is that a large portion of the delivered
dose is consistently lost in the upper airways, preventing
it from reaching the deeper lungs and reducing treatment
effectiveness.* In addition, many drugs used for pulmonary
delivery fall under the Biopharmaceutical Classification
System Class I, characterised by low solubility. For effective
treatment, these drugs must be soluble both in the formulation,
especially for nebulisers and metered-dose inhalers, and in the
lung site before absorption. Poor solubility not only limits drug
absorption in the lungs but also leads to non-uniform delivery
when administered through inhalation devices.®

To overcome the limitations of current pulmonary delivery
systems, nanostructured lipid carriers (NLCs) can be utilised
as carriers in pulmonary delivery systems.® NLCs consist of
solid and liquid lipid cores with surfactants in the outer layers,
which can mimic phospholipid bilayers.” NLCs have numerous
advantages in drug delivery, such as high stability, extended
release, controlled release, and high biocompatibility.® In
addition, NLCs have been widely utilised to improve the
solubility of various poorly soluble drugs to enhance their
bioavailability.”'® Moreover, NLCs can escape clearance by
mucociliary and alveolar macrophages due to their nanoscale
properties. Therefore, NLCs can be internalised and taken up by
various lung cells through endocytosis, which can lead to drug
release and absorption into the systemic circulation.' However,
NLCs can also be taken up by nonspecific cell types, leading to
low selectivity in target cells. In addition, the decreased drug
deposition and short half-life of drugs in targeted cells in the
lungs can lead to ineffectiveness and multidrug resistance in
various diseases. Therefore, pulmonary-targeted delivery into
specific target cells should be designed to reduce systemic side
effects and enhance therapeutic efficacy."

Numerous studies have explored functionalisation through
surface modification of NLCs to increase targeting
effectiveness, improve selectivity, enhance therapeutic efficacy
at specific lung sites, and decrease toxicity effects.” Surface
modification can also be utilised to enhance drug penetration
and control drug release.'" Various functionalised agents,
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such as hydrophilic polymers, polysaccharides, peptides and
proteins, small molecules, surfactants, genes, antibodies, and
pH-sensitive polymers, can be integrated into NLCs through
surface modification. The functionalised NLCs can attach and
adhere to specific target cells, extending the contact time and
increasing the drug concentration.'

To date, literature discussing the utilisation of conventional and
functionalised NLCs for pulmonary delivery remains limited.
While reviews have broadly covered NLCs for drug delivery,
a systematic classification of functionalisation strategies
specifically for pulmonary delivery and a critical comparison
of their associated translational challenges are lacking. This
comprehensive review provides a critical comparison between
conventional and functionalised NLCs for pulmonary delivery,
systematically classifies the functionalisation strategies, and
integrates a practical, forward-looking framework for process
development and clinical translation of both conventional
and functionalised NLCs for pulmonary delivery systems.
This review will discuss the application of traditional NLCs
and the recent advancements in functionalised NLCs,
including their in vitro and in vivo evaluations, to prove
their effectiveness in pulmonary-targeted delivery systems.
To provide a comprehensive review, this study involved
searches on PubMed and ScienceDirect through keywords
such as “nanostructure lipid carrier,” “functionalised (or
functionalized),” and “pulmonary-targeted.”

2. Pulmonary-targeting delivery systems

The respiratory system comprises external respiration, the
interchange of air between the alveoli and lung capillaries,
and internal respiration, which entails the exchange of air
between capillaries and tissues. The external respiratory
system’s anatomy is divided into two primary components:
the upper respiratory system, including the nasal cavity and
throat, and the lower respiratory system, which includes the
larynx, trachea, bronchi, bronchioles, and alveoli.'* The lungs
include alveoli, capillaries, and other respiratory structures,
including bronchi and bronchioles. A connective tissue stroma
exists between the bronchi and alveoli, including lymphatic
vessels, neurons, blood vessels, macrophages, fibroblasts,
and diverse immune cells. The airway epithelium constitutes
a continuous layer mostly comprised of many epithelial cell
types, including ciliated cells, basal cells, goblet cells, club cells,
and pulmonary neuroendocrine cells.”” The lungs are encased
in a pleural membrane and contain pleural fluid. The alveoli
can be utilised as sites for gas exchange and are in direct contact
with pulmonary capillaries. Within the alveoli, macrophages
are tasked with eliminating infections by phagocytosis.'®
Alveoli are responsible for secreting surfactants from type II
pneumocytes to reduce surface tension and prevent alveolar
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collapse. Moreover, alveoli also have type I pneumocytes that
facilitate air exchange. In addition to playing a crucial role in gas
exchange, lungs secrete the angiotensin-converting enzyme,
which is involved in the renin-angiotensin-aldosterone
system, regulating blood volume and pressure.

The lungs contain over 300 million alveoli, comprising type I
and type II pneumocytes. These alveoli are connected to an
extensive network of capillaries within the interstitial space,
which leads to a substantial surface area of approximately 70 m?.
This large surface is a highly effective site for the exchange
of gases between the blood and the alveoli. The respiratory
membrane connects the alveoli and blood vessel walls and has a
thickness ranging from 0.5 to 1.0 um?”. The thin barrier can be a
potential site for drug absorption through the pulmonary route.
The respiratory membrane showed excellent permeability, and
the lungs receive sufficient blood flow, which can lead to drugs
bypassing the initial liver metabolism that often occurs with
systemic drug administration.'” Consequently, pulmonary drug
delivery presents an alternative and attractive prospect for
systemic action. Furthermore, localised drug delivery directly
to the lungs holds promise for enhancing drug accumulation
and efficacy in treating pulmonary diseases.?

Pulmonary delivery systems have been widely utilised to treat
lung-related diseases, such as asthma, COPD, cystic fibrosis,
tuberculosis, and acute lung injury.?' In addition, pulmonary
delivery can also be applied in the treatment of several lung
cancers, including non-small cell lung cancer (NSCLC) and
metastatic lung cancer.”? Pulmonary delivery systems offer
several benefits for delivering drugs into the lungs. The lungs
have a large surface alveolar area of 70-100 m? with thin
respiratory membranes ranging from 0.5-1.0 um, which can
be potential sites for drug absorption through pulmonary
administration. The respiratory membrane exhibits good
permeability with sufficient blood flow. These properties can
prevent first-pass metabolism and enzymatic degradation, often
occurring during systemic drug administration. In addition,
the pulmonary route can also increase drug accumulation and
retention time in deep lungs and, hence, can be utilised to
increase drug efficacy in treating pulmonary diseases.'?

The effectiveness of pulmonary delivery can be influenced
by several factors, such as the aerodynamic particle size,
inhalation device, and formulation. The aerodynamic diameter
of a particle is determined by considering a sphere with a
density of water that settles in an air stream at the same speed
as the given particle. An optimum aerodynamic particle size
ranging from 1 to 5 wm should be considered to deliver drugs
into deeper lung sites and avoid clearance by the mucociliary
system.?*** Furthermore, several types of inhalation devices can
be utilised in pulmonary delivery systems, including medical
nebulisers, metered-dose inhalers, soft-mist inhalers, aqueous
droplet inhalers, and dry powder inhalers.*”® However,
conventional inhaled devices are designed for rapid drug
dissolution and absorption. On deposition, the drug particles
dissolve in the lung fluids and are quickly absorbed into the
highly vascularised pulmonary circulation, leading to a rapid
peak in systemic plasma concentration followed by a relatively
fast clearance. Therefore, these systems often result in a short
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duration of action, requiring frequent dosing to maintain
therapeutic levels. This not only reduces patient compliance
but also increases the risk of systemic side effects.

Therefore,numerous formulation strategies have been explored
to enhance pulmonary drug delivery. Lipid-based nanoparticles
have gained significant attention due to their biocompatibility,
ability to encapsulate hydrophilic and lipophilic drugs, and
potential to improve drug solubility, stability, and controlled
release. Lipid-based nanoparticles have been utilised in various
pulmonary drug delivery systems, including liposomes,*?
nanoemulsions,®®?  lipid-polymer hybrid nanoparticles,
solid lipid nanoparticles,*** and NLCs.** Among these, NLCs
represent an advanced generation of lipid nanoparticles
specifically designed to overcome the limitations of solid lipid
nanoparticles, such as limited drug loading and drug expulsion
during storage. By incorporating a mixture of solid and liquid
lipids, NLCs form an imperfect lipid matrix that improves drug
entrapment efficiency, particularly for poorly water-soluble
drugs. Due to their hydrophobic core, NLCs can effectively
encapsulate lipophilic drugs, creating a drug reservoir at the
site of pulmonary deposition. Moreover, the lipid matrix can
also make a diffusion barrier that significantly slows the release
of the encapsulated drug, which can lead to a sustained-release
profile and prolonged local residence time.*>?

30,31

3. Nanostructured lipid carriers for
pulmonary-targeting delivery systems

3.1. Nanostructured lipid carriers

Nanostructured lipid carriers constitute a second generation of
solid lipid nanoparticles with nanosized and high surface areas.
NLCs consist of solid lipids and liquid lipids on the inner side
and surfactants with cosurfactants on the outer side.”” Adding
liquid lipids can lead to an imperfection in the core structure
of NLCs. This structure has several advantages to overcome
the drawbacks of solid lipid nanoparticles, such as high loading
efficiency, negligible drug expulsion, and high stability.** NLCs
have a smaller particle size on the nanometres scale and a high
surface area-to-volume ratio, which can lead to high solubility
and stability of drugs. Due to their similar hydrophobicity,
poorly water-soluble drugs can dissolve well in a lipid
phase, consisting of solid and liquid lipids. The hydrophobic
drugs are entrapped in a lipid matrix and surrounded by a
surfactant. Using surfactants in NLC formulation can decrease
the interfacial tension between hydrophobic drugs, lipids,
and water, improving the solubility of drugs. In addition,
cosurfactants can increase the stability of NLCs and help
surfactants reduce interfacial tension. Hydrophobic drug-
loaded NLCs can be loaded into the core of the matrix system
to improve stability.** Moreover, NLCs can also control the
release of drugs by diffusion mechanism across lipid barriers,
after which NLCs can be internalised through endocytosis and
transcellular and paracellular pathways.***

3.2. Application of nanostructured lipid carriers in
pulmonary delivery systems

Nanostructured lipid carriers have been utilised as a lung-
targeted delivery system using both passive and active
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mechanisms with unmodified NLCs and functionalised NLCs,
respectively. The mechanism of NLCs can involve active and
passive targeted delivery systems. In passively targeted delivery
systems, conventional or unmodified NLCs, as nanocarriers
with small particle sizes ranging from 10-100 nm, can enhance
permeability and retention at lung-targeted sites, which is called
the enhanced permeability and retention (EPR) effect.** In
addition, NLCs can also prevent mucociliary and macrophage
clearance, which can lead to improved cellular uptake and
internalisation. Pulmonary administration through inhaler
technology can directly target NLCs in lung cells. In a cancer
cell environment, there is leaky vascularisation and rapidly
increasing angiogenesis, so NLCs can increase permeability to
blood vessels, increase extravasation, and escalate retention in
tumour cells.” The passive targeting mechanism of unmodified
NLCs is shown in Figure 1.

Furthermore, NLCs can be easily integrated with ligands
through surface modification to actively target cells, as shown
in Figure 2. Functionalised NLCs with specific ligands can
increase the affinity of NLCs for the receptor of target cells;
hence, the selectivity, permeability, and retention of NLCs
can be improved.”? These surface modification properties can
enhance the cellular uptake and internalisation of NLCs with
low immunogenicity effects. Therefore, the bioavailability
and stability of drugs encapsulated in NLCs can be improved.
Specific targeting of the disease site can reduce toxicity to
normal cells, which can prevent systemic side effects and
improve patient compliance.” NLCs have been widely utilised
to deliver and target drugs into the lungs and specific sites to
treat various lung-related diseases. The current application
of NLCs through a pulmonary delivery system is tabulated in
Table 1.

3.2.1. High particle deposition in the lungs

The important parameter in pulmonary-targeted delivery
is high deposition in the deeper lungs. Mostly, the desired
parameter is determined by aerodynamic particle size, ranging
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from 1-5 pum, to obtain high deposition in the lateral stage,
with low particle deposition in the mouth-throat region.”” The
particle size more than 5 um can be deposited into the mouth-
throat or upper respiratory tract, which can be eliminated
through the mucociliary clearance pathway, whereas particles
less than 1 wm can be exhaled back through the expiratory
system.” The NLCs can be utilised to mitigate losses to mouth-
throat deposition and achieve improved lung deposition.”

Beclomethasone dipropionate-loaded NLCs, which have
a smaller particle size, lower polydispersity index, higher
entrapment efficiency, and enhanced stability during 6-week
stability studies, can be utilised as potential carriers for asthma
and COPD. In addition, superior aerosolisation performance
was achieved through an air jet nebuliser with Next-Generation
Impactor at 60 and 15 L/min airflow rates. Notably, the air jet
nebuliser achieved the lowest beclomethasone deposition in the
initial stages, and the highest concentration of beclomethasone
was deposited in the lateral stages of the Next Generation
Impactor. Therefore, the combination of beclomethasone
dipropionate-loaded NLCs and an air jet nebuliser can be an
effective delivery system to the lower regions of the lungs.*
In another study, ciprofloxacin-loaded NLCs had an optimum
mass median aerodynamic diameter (MMAD) of 3.9-5.1 um,
which indicated that the formulation could be deposited into
deeper lungs with a high fine particle deposition of 49.2%.%°
A lower MMAD (<5 um) could lead to a greater fraction
deposited into deeper lungs. Montelukast-loaded NLCs
dry powder inhalers with MMADs of 2.83-3.24 um could
achieve more than 90% fraction deposition into deeper lungs
at an airflow rate of 60 L/min.’® Similarly, rosuvastatin-
loaded NLCs have an MMAD value of 2.56-2.98 um with a
high fine particle fraction of 87.65-91.25%.% In addition, the
administration of itraconazole-loaded NLCs for pulmonary
aspergillosis remained stable during nebulisation through
air jets and ultrasonic nebulisers, with a high entrapment
efficiency of more than 97% and no significant difference in
entrapment efficiency before and after inhalation.*

Figure 1. The cellular uptake mechanism of conventional nanostructured
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Figure 2. Schematic diagram of conventional and functionalised nanostructured lipid carriers with various modalities, including hydrophilic
polymers, polysaccharides, small molecules, surfactants, peptides, proteins, genes, antibodies, and pH-sensitive polymers. Created in BioRender.
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Abbreviations: DNase: Deoxyribonuclease; ICAM-1: Intercellular adhesion molecule-1; mPEG-Hyd-DSPE: Methoxy (polyethylene glycol)
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siRNA: Small interfering RNA; TPGS: D-0.-tocopheryl polyethylene glycol succinate.

3.2.2. Sustained and controlled release by in vitro drug release kinetics
Nanostructured lipid carriers can be effectively utilised in
pulmonary drug delivery systems to control and sustain the
release of drugs. By encapsulating drugs within their lipid
matrix, NLCs enhance and control the drug release profile over
an extended period.” This lipid matrix slows drug diffusion
and protects the drug from rapid clearance and degradation,
allowing for prolonged therapeutic effects and reduced dosing
frequency. The controlled release mechanism aligns with the
Noyes-Whitney equation, where the drug is encapsulated into
the NLCs matrix system. This encapsulation can increase the
diffusion layer and reduce direct exposure to the dissolution
medium, resulting in a slower and more controlled release in
the lungs. Therefore, NLCs are highly effective for pulmonary
drug delivery due to their ability to encapsulate drugs within
a lipid matrix that controls and sustains drug release over
time. This sustained release helps maintain therapeutic
drug concentrations in the lungs, reduces dosing frequency,
minimises systemic side effects, and improves patient
compliance.

The drug release kinetics for beclomethasone-loaded NLCs
followed the Higuchi model, which strongly indicated that
drug release was influenced by diffusion-controlled release
from the NLCs matrix.* In addition, the release of montelukast
from the NLCs matrix was fitted with the Higuchi model with
a diffusion-controlled sustained release profile.’® Similarly, an
in vitro release study of celecoxib-loaded NLCs revealed that
the release of celecoxib was controlled and sustained for up to
72 h compared with that of the celecoxib solution. This could
be caused by the thickness of the diffusion lipid matrix in the
core of the NLCs.* Furthermore, 34.22% of the ciprofloxacin-
loaded NLCs were released in the first 2 h, followed by a
sustained release pattern for 10 h. The initial release could be
caused by the presence of the drug on the surface of the NLCs,
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and the diffusion mechanism could control the release of the
drug from the inner side of the NLCs matrix.* A similar burst
release pattern was also experienced by gefitinib-loaded NLCs,
with 20% rapid release in 2 h, followed by sustained release up
to 50% in 24 h. This pattern might be caused by the disruption
of solid lipids by the addition of liquid lipids to the NLCs
matrix system, which could lead to changes in the crystallinity
arrangement; hence, sustained release from the lipid core was
expected.” Paclitaxel- and doxorubicin-loaded NLCs exhibited
prolonged drug release for 48 h through several mechanisms,
including surface erosion, disintegration, diffusion-controlled,
and desorption. A higher lipid concentration could increase
the sustained release profile due to the extended lipid matrix
barriers that occur in the diffusion mechanism.®' Surprisingly,
the release of paclitaxel and doxorubicin-loaded NLCs from
dry powder inhalers could be extended for 20 days, with 65%
of the drug released.*

3.2.3. Enhanced antimicrobial activity

Nanostructured lipid carriers have been utilised for the
pulmonary delivery system of numerous drugs, with both
local and systemic action. NLCs can be utilised as a carrier in
the treatment of localised lung diseases, including bacterial
pneumonia, tuberculosis, and fungal infections, by enhancing
antimicrobial efficacy.”®”” NLCs can improve the solubility and
stability of drugs and facilitate controlled release, specifically
at the site of infection within the lungs. Their nanoscale
size enables deep lung penetration and efficient uptake by
alveolar macrophages, targeting intracellular pathogens more
effectively. In addition, NLCs can navigate the mucus barrier
and prolong drug retention, ensuring sustained antimicrobial
action at the infection site while reducing systemic toxicity.

Ciprofloxacin-loaded NLCs could enhance antimicrobial
activity against Gram-positive and Gram-negative bacteria,
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such as Staphylococcus aureus and Bacillus spp., in non-cystic
fibrosis bronchiectasis. Ciprofloxacin-loaded NLCs could
significantly inhibit bacterial growth for longer than free
drugs. This may be attributed to the presence of lipids in
NLCs and their smaller particle size, which could enhance
the cellular uptake of NLCs into the bacterial membrane.” In
addition, colistin-loaded NLCs also showed high antimicrobial
activity against Pseudomonas aeruginosa in cystic fibrosis,
with only 3% resistant clinical strains, and enhanced biofilm
eradication efficiency.”’ Furthermore, NLCs could enhance
antimicrobial activity against P. aeruginosa, with a minimum
inhibition concentration (MIC) of 1 ug/mL, compared with
2 ug/mL of solid lipid nanoparticles.* Moreover, sodium
colistimethate-loaded NLCs have good stability, with a MIC
of <16 ug/mL against P. aeruginosa for up to 12 months of
stability, compared with solid lipid nanoparticles, which
could maintain antimicrobial activity for only 3 months.”
In another study, incorporating copper (II) complexes into
NLCs decreased the MIC against Mycobacterium tuberculosis
by 27.3-55.4 times compared to free complexes. This result
suggested that encapsulating copper (II) complexes into NLCs
could significantly increase antimicrobial activity due to the
interaction of the positive charge of the NLCs’ surface and
the anionic cell membranes of M. tuberculosis. This interaction
could lead to longer retention times and enhance cellular drug
penetration into the bacterial membrane.*

3.2.4. Escalated in vitro cytotoxicity

Nanostructured lipid carriers have emerged as promising
nanocarriers for pulmonary drug delivery due to their
biocompatibility and ability to enhance drug bioavailability in
the lung tissues. Numerous in vitro studies have demonstrated
that NLCs can escalate cytotoxic effects on target pulmonary
cells by improving drug cellular uptake and facilitating
sustained release of therapeutic agents directly to the lung
epithelium. The biocompatible lipid composition of NLCs may
facilitate fusion with cellular membranes, further enhancing
the cytotoxic potential against diseased lung cells.

An in vitro cytotoxicity study of celecoxib-loaded NLCs
revealed a correlation between in vitro release and half-
maximal inhibitory concentration (ICSO) values. The higher
concentration and longer exposure time of celecoxib could
decrease the IC, wvalues, which strongly indicates that
celecoxib could be controlled for an extended period and
has enhanced effectiveness for pulmonary administration.*
Another study revealed a similar correlation between longer
exposure times and lower IC, values of celecoxib-loaded
NLCs, which were 252.02, 102.31, and 27.36 ug/mL at 24, 48,
and 72 h, respectively.” Itraconazole-loaded NLCs exhibited
no toxic effect, with 97.4% viability against A549 cells.”
Sodium colistimethate-loaded NLCs were 160-fold and
28-fold less toxic than free drugs in H441 cells and A549 cells,
respectively.®® This result suggested that NLCs could reduce
systemic toxicity through their controlled release properties.
Moreover, the cytotoxicity assay of paclitaxel and doxorubicin-
loaded NLCs was ninefold greater than that of free drug
solutions.®” This finding implies that NLCs could decrease
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systemic toxicity. In addition, a cytotoxicity assay with
3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide
against the A549 cell line of montelukast-loaded NLCs revealed
that NLCs have significantly lower toxicity than pure drugs.
This may be related to the sustained release of montelukast
from the NLCs matrix.”® In another study, oleuropein-loaded
NLCs were shown to have no toxic effect at concentrations up
to 462 UM and significantly greater antioxidant activity against
A549 cell lines than pure drugs due to greater cellular uptake
and cell permeability.”” However, the in vitro cytotoxicity
study in A549 cells revealed that gefitinib-loaded NLCs had a
higher IC,  value than pure drugs at 24 h, and there were no
significant differences in the IC_ values after 48 and 72 h. This
could be caused by the sustained release properties of NLCs,
which could prevent initial release and enhance release in
targeted cells with reduced systemic toxicity.>

3.2.5. Enhanced in vitro cellular uptake and penetration
Nanostructured lipid carriers can improve cellular uptake and
internalisation into cells due to their relatively small particle
size, which facilitates easier interaction with cell membranes
and promotes endocytosis.”® Their small size allows NLCs to
navigate biological barriers efficiently, especially within the
pulmonary environment, where tight epithelial junctions
and mucus layers can hinder drug delivery. The enhanced
internalisation of NLCs by pulmonary cells leads to higher
intracellular drug concentrations directly at the target site,
improving the efficacy and effectiveness of drug delivery into
the lungs.

Compared with the conventional emulsion, the uptake of
curcumin-loaded NLCs after 2 h was significantly greater.
In addition, NLCs can be internalised into the cell through
caveolae uptake through endocytosis. This can be proven by the
lower cellular uptake of curcumin-loaded NLCs in caveolae-
devoid mice than in normal cells.** Paclitaxel- and doxorubicin-
loaded NLCs exhibited the ability to enhance cellular uptake
by A549 cells compared to free drugs. This could be caused
by the high surface area and wettability, leading to membrane
integrity loss and improved permeability.®* Furthermore, the
artificial mucus penetration study revealed that 73% of the
NLCs loaded with tobramycin penetrated, whereas only 30%
of the free drug permeated. This strongly indicates that NLCs
could enhance the penetration of drugs.®

3.2.6. Improved in vivo efficacy

Besides in vitro studies, NLCs can significantly improve the
efficacy of in vivolung delivery by enhancing drug bioavailability
and retention within the pulmonary delivery system. Their
unique lipid matrix enables high drug loading and controlled
release, leading to sustained therapeutic concentrations directly
at the lung tissue. Numerous in vivo studies demonstrate that
NLCs effectively penetrate lung epithelial cells and alveolar
macrophages, ensuring efficient intracellular delivery and drug
protection from enzymatic degradation. These advantages
translate into superior therapeutic outcomes in animal models
of lung diseases, confirming that NLCs provide enhanced
clinical benefits beyond in vitro observations.



Nanostructured lipid carriers for lung delivery

Compared to the celecoxib solution, the celecoxib-loaded
NLCs could increase the retention time in the lungs of mice
for up to 12 h, resulting in a slower elimination rate.”® In
another study, montelukast-loaded NLCs increased drug
deposition in the bronchoalveolar lavage fluid of male Wistar
rats by twofold for an hour. Another study also revealed that
paclitaxel-loaded NLC dry powder inhalers have greater lung
uptake than free drug suspensions. This could be caused by the
longer retention time of NLCs at the targeted site, prolonging
release and slowing drug clearance from the organ. In
addition, paclitaxel and doxorubicin-loaded NLC dry powder
inhalers could maintain drug accumulation at the lung site.
This could be influenced by the aerodynamic particle size,
leading to the specific localisation of particles and the sustained
release properties of NLCs.

Furthermore, high deposition of technetium-99 m-hexamethyl
propylene amine oxime-labelled NLCs (*"Tc-HMPAO-NLCs)
in the deeper lungs was detected through gamma scintigraphy
on falcons as an animal model.” IR-783 dye-labelled NLCs
were utilised to examine the biodistribution of NLCs in the
mice after inhalation. The in vivo biodistribution revealed that
NLCs could accumulate and be deposited into the lungs for
48 h.** Another study revealed high distribution in the lungs
after inhalation of sodium colistimethate-loaded NLCs, which
could be maintained for up to 48 h after administration.®®
Similarly, high deposition and concentrations of tobramycin
were detected in the lungs of female BALB/c OlaHsd mice.*”
This may be attributed to the prolonged release of NLCs,
which could lead to high accumulation in the lungs and reduced
systemic toxicity.

Montelukast-loaded NLCs could also enhance the targeting
factor by increasing the area under the curve (AUC) _ to
11.76 times greater than the montelukast solution. This might
be caused by the smaller particle sizes that could escape through
macrophage clearance and the sustained release properties
of montelukast-loaded NLCs.*® Similarly, rosuvastatin-
loaded NLCs presented a 35-fold greater AUC,  and a 1.14-
fold greater C_ than the pure drugs. Moreover, the t__ of
rosuvastatin-loaded NLCs was sixfold greater than that of the
pure solution, which indicates the sustained release properties
of NLCs.*® The greater bioavailability of rosuvastatin-loaded
NLCs is due to the improvement in residence time and the
ability to escape from mucociliary and macrophage clearance.

Compared to the control, the combination of celecoxib-loaded
NLCs and docetaxel significantly inhibited the growth rate
of A549 metastatic tumours in mice, with a 67% decrease in
tumour volume.* In another study, paclitaxel- and doxorubicin-
loaded NLCs presented the highest tumour inhibition rate of
84%, which was 3.23-fold greater than free drugs. This finding
suggested that the combination of paclitaxel and doxorubicin
encapsulated in the NLC matrix has a synergistic effect and
reduces systemic toxicity in the treatment of lung cancer.*!

3.2.7. Reduced in vivo toxicity

Nanostructured lipid carriers show excellent biocompatibility
with minimal inflammatory responses, which can reduce the
toxicity effect. This is primarily due to their composition
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of physiological lipids, which are well tolerated by
biological systems, minimizing irritation or cytotoxicity on
administration.” This biocompatible profile is crucial for
pulmonary delivery, as it lowers the potential for adverse
effects commonly associated with other drug delivery systems
that may provoke lung inflammation or oxidative stress.

An acute toxicity study of copper (II) complex-loaded NLCs was
conducted in mice over 14 days. The results revealed that 100%
of the mice were lost when administered with free copper (II)
complex type 1 at 300 mg/kg, 500 mg/kg, or 1,000 mg/kg. On
the other hand, incorporating copper (II) complex type 1-loaded
NLCs at a dose of 1,000 mg/kg increased the survival rate by
67%. Furthermore, copper (II) complex-loaded NLCs did not
significantly increase alanine aminotransferase or aspartate
aminotransferase levels in mice, which strongly indicates that
the formulation did not induce hepatotoxicity.*?

Compared to the free drug, sodium colistimethate-loaded
NLCs at a lower CFU/g lung against P. aeruginosa could be
achieved with a lower dose in BALB/c female mice. For
example, a dose of encapsulated NLCs equivalent to 70 or
140 pg of sodium colistimethate could be similar to 648 ug
or 3,400 ug of free sodium colistimethate, respectively. This
indicated that a lower dose was required to achieve similar
antimicrobial activity against P. aeruginosa, which could reduce
toxicity. Histopathological analysis confirmed no significant
toxicological effects in the lungs, spleen, liver, or kidney on
day 5.° Another study revealed no histopathological changes
in tissue damage or inflammatory reactions in Wistar rats after
administering paclitaxel- and doxorubicin-loaded NLCs dry
powder inhalers.®

3.3. Efficacy comparisons with traditional inhalation
formulations

Nanostructured lipid carriers demonstrate transformative
potential in pulmonary drug delivery by consistently
inhalation formulations in
deposition efficiency, sustained release, and therapeutic

outperforming conventional

outcomes across diverse clinical settings. NLCs can enhance
drug bioavailability, reduce systemic side effects, and improve
therapeutic precision. Preclinical studies consistently
demonstrate superior outcomes, including higher tumour
inhibition and antimicrobial efficacy. Therefore, NLCs can
address key limitations of conventional inhalation therapies,
including poor drug solubility, short pulmonary residence
time, suboptimal therapeutic efficacy, systemic side effects, and
lack of cellular targeting.

For instance, beclomethasone dipropionate-loaded NLCs have
demonstrated excellent aerodynamic properties, with studies
reporting MMAD values between 1.15 and 1.62 um and
respirable fractions ranging from 54.36% to 69.56%,* compared
to conventional extra fine-particle hydrofluoroalkane-
pressurised metered-dose inhalers, which have an MMAD
of approximately 1.2 wm with a fine particle fraction of
24.1-28.7%.% Beclomethasone dipropionate-loaded NLCs not
only match deep-lung deposition efficiency but also introduce
a sustained-release profile governed by Higuchi kinetics,
offering the potential for extended dosing intervals and
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reduced systemic exposure. Moreover, ciprofloxacin-loaded
NLCs demonstrate superior pulmonary delivery performance
compared to ciprofloxacin spray-dried powders for non-
cystic fibrosis bronchiectasis treatment. The NLC formulation
achieved a fine particle fraction of 49.2% and a MMAD in
the ideal range of 3.9-5.1 um, facilitating effective deep lung
deposition.” In contrast, the spray-dried ciprofloxacin showed
a lower fine particle fraction of 23.8% with an MMAD of
7.62 um.*" In another study, ciprofloxacin dry powder inhalers
also exhibited a fine particle fraction of 31.68 + 1.4% and a
MMAD of 7.23 + 0.01 um, indicating suboptimal pulmonary
deposition characteristics.®> Furthermore, the co-delivery
of paclitaxel and doxorubicin through NLCs resulted in the
highest lung tumour inhibition rate of 84% in the human
NSCLC xenograft model using NCL-H460 cells in BALB/c
nude mice. In contrast, the free drugs were significantly less
effective, with free paclitaxel and free doxorubicin achieving
tumour inhibition rates of only about 26%.°' In addition,
a comparison of the rifampicin dry powder inhalers and
the mannosylated NLCs highlights a difference between a
conventional deposition-focused strategy and an advanced
cellular-targeting approach. The dry powder inhaler
formulation exhibited a MMAD of 4.3-5.8 um and achieved
alow fine particle fraction of 28.9%. However, the dry powder
inhalers showed a 1.5-fold higher maximum drug concentration
in rat lungs compared to the oral formulation.® In contrast, the
mannosylated NLCs are engineered for active targeting, which
was demonstrated in vitro by a 14.5-fold increase in uptake by
macrophages compared to non-mannosylated NLCs, leading
to a more pronounced antimycobacterial effect at the cellular
level. Thus, while the dry powder inhalers enhance overall
drug load in the lungs, the mannosylated NLCs were designed
for superior precision in delivering the drug directly into
infected cells.®

Despite these demonstrated advantages over traditional
formulations, conventional NLCs suffer from a fundamental
limitation of low cellular selectivity. This drawback reduces
their effectiveness in delivering drugs specifically to target
cells. Therefore, advanced targeting strategies are essential to
overcome this challenge, as discussed in Section 4.

4. Functionalised nanostructured lipid carriers
for pulmonary-targeting delivery systems

Although NLCs have numerous advantages in delivering
drugs into the lungs, they have low selectivity for target cells,
which could lead to off-target drug delivery and decreased
safety and efficacy of drugs. To target NLCs in specific cells
in the lungs, several types of NLCs integrated through surface
modification could be applied, including hydrophilic polymers,
polysaccharides, peptides and proteins, small molecules,
surfactants, genes, antibodies, and pH-sensitive polymers
(Figure 2). Each surface modifier has distinct characteristics
to target specific cells in the lungs. The targeting mechanisms
of various functionalised NLCs are described in Table 2.
In addition, Table 2 also discusses the advantages and
disadvantages of various surface modifiers in functionalised
NLCs.
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The surface modification of NLCs could be engineered
through pre-assembly and post-assembly techniques. In the
pre-assembly process, a specific ligand was added and mixed
in the fabrication of NLCs, whereas the coating and chemical
conjugation techniques of NLCs were utilised in the post-
assembly process. Various methods could be utilised for ligands
to attach to the surface of NLCs, such as chemical conjugation
through covalent or non-covalent binding, electrostatic
interactions through attractive force charges, physical
interactions, and coating.''®'"" Moreover, the post-assembly
process has numerous advantages, such as a high concentration
of ligands attached to the surface of NLCs, which could lead
to high cellular uptake and internalisation compared with the
pre-assembly process.” For instance, bombesin has been used
to fabricate doxorubicin-loaded NLCs through pre-assembly
and post-assembly processes. Compared to pre-assembly, post-
assembly bombesin fabrication enhanced receptor-mediated
targeting and improved the cellular uptake of NLCs. The post-
assembly method also preserved the structural integrity of the
NLGCs, which could lead to increased drug and gene delivery
efficiency with reduced off-target effects.”

To evaluate the safety and efficacy of functionalised NLCs
for pulmonary-targeted delivery systems, numerous studies
have been conducted through in vitro and in vivo assessments.
In vitro evaluations are described in Table 3, whereas in vivo
assessments are shown in Table 4.

4.1. Hydrophilic polymers

PEGylation is a surface modification of hydrophilic polymers,
such as polyethylene glycol (PEG). PEGylated particles could
also be called stealthy nanoparticles, which stabilise surface
nanoparticles with inert polymers.*® PEG is a hydrophilic
molecule that consists of repeated ethylene glycol units.
The addition of PEG on the surface of nanoparticles could
be achieved by covalent bonding between PEG chains and
lipid nanoparticles.* The introduction of engineered PEG
into the surface of nanoparticles could increase release and
promote sustained release, leading to prolonged retention and
circulation times. The higher molecular weight of PEG could
increase the diffusion barrier of lipid nanoparticle matrix
systems so that drug release could be extended. In addition,
PEGylation could escape protein opsonin adsorption in the
systemic circulation and mononuclear phagocytic cells or the
reticuloendothelial system in the liver and spleen.!**'*! Due to
the hydrophilic properties of PEG, surface modification with
PEG could result in a hydrophilic surface and increased water
solubility. Furthermore, PEGylation could also improve EPR
effects and reduce the toxicity of drugs encapsulated in lipid
nanoparticles.'*'* The increase in the EPR effect of PEGylated
NLCs is shown in Figure 3.

Surface modification with PEGylation can provide a stealth
effect by creating a physical and energetic barrier against
immune recognition.'*® The highly hydrophilic and flexible
PEG chains at the molecular level attract and organise a
substantial layer of water molecules around the nanoparticle,
forming a dense hydration shell. This shell sterically hinders
the approach and adsorption of opsonin proteins from the
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Nanostructured lipid carriers for lung delivery Biomaterials Translational

bloodstream, a process required for recognition and clearance
by the mononuclear phagocyte system.'* The effectiveness of
this steric shield is critically dependent on the conformation
of the PEG chains, which is governed by their grafting
density. At low densities, PEG adopts a coiled mushroom-
like conformation that offers minimal protection due to more
interaction at the surface of particles. At higher densities,
however, steric repulsion forces the chains to extend outwards,
forming a dense brush-like conformation that creates a much
more robust and impenetrable barrier, significantly prolonging
circulation time and enhancing the potential for tumour
accumulation.'”

Referecnes
139

Improvements in drug efficacy at lung sites can be achieved
through surface modification with PEGylated NLCs. Du
and Yin'"? investigated the combination of etoposide- and
cisplatin-loaded NLCs with PEG modification for lung cancer
treatment. Compared to free drugs, the PEG-functionalised
NLC:s significantly inhibited tumour growth in vivo, resulting
in greater lung cancer deposition. This result suggested
that PEGylated NLCs have improved efficacy for lung
cancer therapy due to the EPR effect.'” In another study,
lumacaftor- and ivacaftor-loaded PEGylated NLCs were
internalised through CFBE41o-cell uptake. Hence, imaging
with magnetic resonance imaging and computed tomography
scans of mouse lungs revealed that cystic fibrosis and oedema
fully disappeared within 4 weeks. This could be influenced by
the enhancement of mucus penetration and cellular uptake

basic conditions (pH 7.4). The uptake efficiency and cytotoxicity of pH-sensitive functionalised NLCs
were greater than unmodified NLCs. The functionalised NLCs had a higher cellular inhibition effect

The pH-sensitive functionalised NLCs have a faster release at acidic pH (5.5) and a slower release at
against lung cancer cells compared to the unmodified NLCs

E" through CFBE410- bronchial epithelial cells due to their high
E loading capacity and prolonged release properties.''¢
E Bondi et al.''* also studied the effects of fluticasone propionate-
loaded NLCs with PEG surface modifications on corticosteroid
resistance induced by cigarette smoke. The results showed that
2 § = F; drug release was sustained for 72 h, with an initial burst release
£ f: 5 3 of 15% in the first few hours. Furthermore, PEG-functionalised
E 5 2 %‘ NLCs did not induce cell necrosis or apoptosis in 16-human
bronchial epithelial cells, which indicates that the nanoparticles
have good biocompatibility. Moreover, fluticasone-loaded
S § § PEGylated NLCs can significantly decrease the reactive oxygen
¢ g a species and toll-like receptor 4 expression induced by cigarette
2 = = . . .
2z 3 smoke extract and increase the glutathione concentration
compared with unencapsulated drugs. Therefore, PEGylated
NLCs can enhance drug efficacy against COPD-induced
El cigarette smoke effects. This can be attributed to the greater
£ . cellular uptake of fluticasone in 16-human bronchial epithelial
. ;g g cells than in free drugs and unmodified NLCs.'*
S o
g g 2 The molecular weight of the PEG also plays a crucial role.

Higher-molecular-weight PEG chains create a thicker steric
barrier, enhancing the stealth effect. Zhang et al.''? studied
two types of PEGs for functionalizing NLCs: PEG-40, with a
molecular weight of 2,000 Da, and PEG-100, with a molecular
weight of 5,000 Da. The release kinetics of 10-hydroxy
camptothecin from NLCs through erosion and diffusion
depend on the molecular weight and chain length of PEG. The
longer chains of PEG can lead to a slower release of drugs due
to the thicker diffusion layer of the matrix system, with 56.5%
and 43.3% of the drugs released at 24 h for the PEG-40- and
PEG-100-functionalised NLCs, respectively. The in vitro

1,2-stearoyl-sn-glycerol-3-phospho
ethanolamine (mPEG-Hyd-DSPE)

Methoxy (polyethylene glycol)

2000- hydrazone-
lipid carriers; NSCLC: Non-small cell lung cancer; pDNA: Plasmid DNA; PEG: Polyethylene glycol; RES: Reticuloendothelial system; RNAi: RNA interference; siRNA: Small interfering RNA; TPGS: Tocopheryl polyethylene glycol succinate; TLR4: Toll-like

mPEG-Hyd-DSPE: Methoxy polyethylene glycol-hydrazone-1,2-distearoyl-sn-glycero-3-phosphoethanolamine; MRC-5: Normal human fetal lung fibroblast cell line; NCI-H1299/NCI-H460: Non-small cell lung cancer cell lines; NLCs: Nanostructured
receptor 4; TISWPPR: CD133*receptor-targeting peptide.

Abbreviations: AEYLR: Epidermal growth factor receptor-binding peptide; A549: Human lung carcinoma cell line; ADR: Adriamycin-resistant; BCL2: B-cell lymphoma 2 (anti-apoptotic gene); BMDM: Bone marrow-derived macrophages; CCL12: Chemokine
(C-C motif) ligand 12; CD133: Cluster of differentiation 133; CFBE410-: Cystic fibrosis bronchial epithelial cell line; DNA: Deoxyribonucleic acid; DNase: Deoxyribonuclease; DSPE: 1,2-Distearoyl-sn-glycero-3-phosphoethanolamine; EAhy926: Human
endothelial cell line; EGFR: Epidermal growth factor receptor; HIF1A: Hypoxia-inducible factor 1-alpha; IC_: Half maximal inhibitory concentration; ICAM-1: Intercellular adhesion molecule 1;J774: Murine macrophage cell line; L929: Mouse fibroblast cell
line; LTEP-a2: Human lung epithelial cell line; MDDC: Monocyte-derived dendritic cells; MDM: Monocyte-derived macrophages; MMP3: Matrix metalloproteinase 3; MRP1: Multidrug resistance-associated protein 1; mPEG: Methoxy polyethylene glycol;

Table 3. (Continued)
Functionalised agent

pH-sensitive
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Figure 3. The targeting mechanism of functionalised nanostructured lipid carriers involves active targeting through receptor-mediated
endocytosis and passive targeting through the EPR effect. Created in BioRender. Gunawan, M. (2025) https://BioRender.com/1rxsqr2.
Abbreviations: CD44: Cluster of differentiation 44; EGFR: Epidermal growth factor receptor; EPR: Enhanced permeability and retention;
ICAM-1: Intercellular adhesion molecule-1; NLCs: Nanostructured lipid carriers.

cellular uptake of PEG-functionalised NLCs by A549 cells was
significantly greater than that of unmodified NLCs. This can be
influenced by surface charge interactions between the positive
or neutral charge of PEGylated NLCs and the negative charge
of the membrane cells. In contrast, unmodified NLCs have a
highly negative charge, which can lead to electronic repulsion
instead of attraction. Moreover, PEG-40-functionalised NLCs
have greater cellular uptake than PEG-100, which strongly
indicates that the higher molecular weight of NLCs can also
decrease their cellular uptake. Similarly, pharmacokinetic
analysis in mice revealed that compared with unmodified
NLCs and solutions, PEG-functionalised NLCs have longer
lung retention times and half-lives. PEG-functionalised
NLCs have a significantly greater degree of deposition into
the lungs and a lower distribution in the liver and spleen,
whereas unmodified NLCs can be distributed into the liver
and spleen due to RES uptake. This might be caused by the
sustained release properties of the PEG-functionalised NLCs
and the EPR effect of the PEGylated NLCs, which could lead
to type I pneumocyte adsorption and enhanced cellular uptake
in the lungs. However, the molecular weight also influenced
the RES uptake of the PEG-functionalised NLCs. The number
of drugs distributed in the liver and spleen in the PEG-100
group was significantly greater than that in the PEG-40 NLCs
group. In addition, the AUC_, values in the lungs of the PEG-
functionalised NLCs were 3.13-fold and 1.87-fold greater than
those of the unmodified NLCs for the PEG-40- and PEG-100-
functionalised NLCs, respectively. Compared to PEG-40, PEG-
100-functionalised NLCs with higher molecular weights could
induce and initiate phagocytosis of RES, leading to greater RES
uptake and a lower distribution in the lungs. Compared with
unmodified NLCs, the highest level of cellular uptake of PEG-
40-functionalised NLCs could lead to more efficient treatment
for antitumour activity in vivo in A549-bearing nude mice. This
might be influenced by sustained release properties and the
ability to escape RES uptake, which could result in EPR effects.'"

However, PEGylation is now associated with several clinical
challenges. PEG can trigger immune responses, including
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the production of anti-PEG antibodies, which leads to the
accelerated blood clearance phenomenon.'® This results in
rapid elimination of repeated doses, reduced therapeutic
efficacy, and accumulation in organs such as the liver and
spleen. These issues concern humans, who often possess pre-
existing anti-PEG antibodies due to widespread exposure.'*
In addition, PEGylated nanoparticles can also activate the
complement system, which can cause acute hypersensitivity
reactions and serious adverse events.'* Moreover, the dense
hydrophilic shell created by PEG can hinder cellular uptake
by forming a steric barrier that prevents receptor interaction
and intracellular delivery, especially for therapies that require
entry into the cell, such as gene-based treatments. This
presents a trade-off where increased PEG coverage enhances
circulation time but reduces drug delivery efficiency at the
target site. Furthermore, PEG is not easily biodegradable, and
high molecular weight (20-50 kDa) may accumulate in tissues,
leading to long-term toxicity.'*

4.2. Polysaccharides

Polysaccharides, such as biopolymers, can be utilised in
targeted delivery systems due to their biocompatibility and
high targeting selectivity for polysaccharide receptors such as
mannose receptors, toll-like receptor 4, scavenger receptors,
and other receptors on the surface of cells.””! Mannose and
hyaluronic acid are commonly used polysaccharides in lung
delivery because they offer excellent biocompatibility and
biodegradability while enabling pulmonary-targeted drug
delivery. Mannose specifically binds to mannose receptors
on alveolar macrophages, facilitating enhanced uptake
by these immune cells, which is beneficial for treating
respiratory infections and inflammation. Hyaluronic acid
interacts with CD44 receptors on lung epithelial and
inflammatory cells, providing mucoadhesive properties that
improve drug retention in lung tissues. Therefore, mannose
and hyaluronic acid are effective ligands for improving the
specificity, efficiency, and safety of pulmonary drug delivery
systems.
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4.2.1. Mannose-functionalised nanostructured lipid carriers

In lung-targeted delivery, mannose receptors can be presented
on the surface of macrophages and can be utilised to target
various antituberculosis drugs.'**'** Functionalised NLCs with
mannose facilitate their recognition by the mannose receptor
(CD206), which is highly expressed on alveolar macrophages.
The mannose receptor can mediate macrophage phagocytosis
and endocytosis, which is the primary infection site for
M. tuberculosis.">*'*> This interaction can facilitate the efficient
internalisation of the NLCs by intracellular pathogens. This
pathway can bypass certain bactericidal responses, preserving
the encapsulated drug, which can then be released in the acidic
environment of the phagolysosome, where the bacteria reside.
Therefore, the use of mannosylated lipid nanocarriers could be
a promising strategy to increase the efficacy of antituberculosis
drugs with enhanced selectivity for the mannose receptor
of alveolar macrophages and reduced toxicity in other lung
8788156 The results of the macrophage-targeted delivery of
mannosylated NLCs are shown in Figure 4.

sites.

The surface modification of NLCs with mannose could be a
potential strategy for targeting specific alveolar macrophages,
which have mannose receptors, in tuberculosis infections.
Patil and Deshpande'® developed mannosylated NLCs
to improve the safety and bioavailability of clofazimine
through inhalation, for tuberculosis treatment. The release
kinetics of mannosylated NLCs were lower than those of
non-mannosylated NLCs due to the coating and protective
properties of mannose on the surface of NLCs. In addition,
the in vitro release results revealed that drugs released from the
matrix system could be influenced by the pH of the medium.
The highest dissolution rate was observed at pH 5.0, which has
controlled release properties, whereas the lowest dissolution
rate was observed at pH 7.4."'® Another study revealed that the
pH-dependent rifabutin-loaded mannosylated NLCs could be

Gunawan, M., et al.

released at pH 5.0, whereas only 20% could be released at pH 7.4
during the 25-h study. These results suggested that the drug
could be released in the acidic environments of M. tuberculosis
residents and enhance uptake in acidified phagosomes and
phagolysosomes while preventing drug release at non-infected
sites (Figure 4).""” Moreover, rifampicin-loaded NLCs resulted
in greater drug release at pH 7.4 than mannosylated NLCs,
which indicates that mannosylated NLCs could improve the
specificity of macrophages in acidic environments.*

Vieira et al.® studied rifampicin-loaded NLCs coated with
mannose for targeted macrophage delivery. Interestingly, non-
mannosylated NLCs have a negative charge on the surface of
lipid nanoparticles. However, the addition of a positive charge
lipid, such as stearyl amine, in the mannose-functionalised
NLCs can reverse the surface charge from a negative charge
of =34 mV (unmodified) into a positive charge (+47 mV),
which can enhance the electrostatic interaction between
mannosylated NLCs and the surface of the negatively charged
cell membrane. During the mannosylation process, mannose
is conjugated through Schiff base formation (-N=CH-)
between the aldehyde group of mannose and the amine
groups of stearyl amine-functionalised NLCs. This change to
a positive charge can enhance the electrostatic interactions
between the positively charged mannosylated-NLCs and the
negatively charged cell membranes, which can facilitate the
improvement of cellular uptake by macrophages. In addition,
mannosylated NLCs can also improve macrophage recognition
through specific macrophage mannose receptors. These dual
strategies can improve cellular uptake and internalisation into
macrophages. However, the positive charge of rifampicin-
loaded mannosylated NLCs could induce greater cytotoxicity
than unmodified NLCs.* Nevertheless, using cationic lipids,
such as stearyl amine, in mannose-functionalised NLCs can
significantly elevate cytotoxicity."”” This increased toxicity
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Figure 4. Mannose-functionalised nanostructured lipid carriers for targeted tuberculosis treatment in alveolar macrophages. Created in

BioRender. Gunawan, M. (2025) https://BioRender.com/elegvfo.
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can be due to the strong electrostatic interactions between the
positively charged lipid molecules and the negatively charged
components of the cell membrane."® These interactions can
compromise membrane integrity, leading to membrane
destabilisation, increased permeability, and ultimately, cell
lysis or programmed cell death.” Although this mechanism
may facilitate improved cellular uptake, it also introduces
significant safety concerns, especially regarding potential
toxicity in non-target tissues. The non-specific disruption of
cell membranes can lead to unintended cytotoxic effects; hence,
the lipid composition, surface charges, and targeting specificity
should be optimised.

Magalhies et al.''” developed a three-dimensional (3D) human
lung model that consists of three layers of a coculture model,
including monocyte-derived macrophages, A549 cells, and
monocyte-derived dendritic cells, for upper, middle, and
lower lung cell models, respectively. This 3D human lung
model can mimic the human alveolar epithelial tissue barrier
in the lungs. The results showed that the functionalised and
unmodified NLCs were biocompatible without destroying
the integrity of the cell membrane and did not induce a
proinflammatory response in cytokines, such as interleukin
(IL)-1B, tumour necrosis factor alpha, and IL-8. Furthermore,
a higher concentration of coumarin-labelled mannosylated
NLCs was detected in A549 cells than in non-mannosylated
NLCs. These findings strongly indicated that NLCs’ surface
modification with mannose could enhance the cellular
uptake and internalisation of NLCs into targeted alveolar
macrophages.'” Similarly, rifampicin-loaded mannosylated
NLCs could increase the cellular uptake of bone marrow-
derived macrophages 14.5 times greater than unmodified NLCs.
These effects could significantly increase the antimycobacterial
activity of rifampicin for mannosylated NLCs.* Another study
reported that rifampicin-loaded mannosylated NLCs could
improve the cellular uptake of NLCs by NR8383 alveolar
macrophages 2.6-fold greater than that of non-mannosylated
NLCs.'” Song et al.'®® studied alveolar macrophage uptake
in vivo in mice for rifampicin-loaded NLCs with and without
a mannose coating. The results revealed that compared with
unmodified NLCs, mannosylated NLCs could increase cellular
uptake threefold in vivo.'” However, non-mannosylated NLCs
could also be internalised into A549 cells through non-specific
endocytosis.'"”

Pharmacokinetic analysis revealed that compared to the free
drug, mannosylated NLCs could increase lung deposition and
AUC,__bytwofold."® Another studyinvestigated mannosylated
isoniazid NLCs with sustained release properties for 48 h. The
AUC,  increased approximately 1.17-fold compared to that of
unmodified NLCs.* This could be affected by sustained release
properties, leading to an extended half-life and lung retention
time. In addition, surface modification of NLCs with mannose
could induce adhesion to lung epithelial cells and decrease
mucociliary clearance while enhancing cellular uptake and
internalisation. As expected, the concentration of clofazimine
found in the nontargeted tissue of non-mannosylated
NLCs was greater than that in the mannosylated NLCs
after 48 h. These results strongly indicated that compared
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to non-mannosylated NLCs, mannosylated NLCs could be
more specific and deposited into the lungs."'® Moreover, an
in vivo acute inhalation toxicity study revealed no significant
changes in histopathological examinations of lung, liver, or
spleen rat organs after 14 days''® or 4 weeks of study.** These
results indicated that mannosylated NLCs could increase the
safety and efficacy of targeted lung delivery for tuberculosis
treatment.

However, mannose-functionalised NLCs still have several
drawbacks. The mannose receptor can mistakenly interpret
mannosylated NLCs as pathogens, triggering unwanted
immune responses and pro-inflammatory cytokine release.'*
Furthermore, the cationic lipids used in mannose conjugation
can increase cytotoxicity by disrupting cell membranes and
inducing cell death.'’ Moreover, synthesizing structurally
well-defined, multivalent mannosylated NLCs present
significant chemical and engineering challenges. Precise
control over ligand density and surface distribution is required
to ensure optimal receptor binding and biological performance.
Nevertheless, current conjugation strategies often suffer from
low yields, heterogeneous surface modification, and batch-
to-batch variability, limiting scalability, reproducibility, and
translational feasibility in clinical applications.

4.2.2. Hyaluronic acid-functionalised nanostructured lipid carriers
Another polysaccharide that can be used to target lung cancer
is hyaluronic acid. Hyaluronic acid is a polysaccharide that
consists of D-glucuronic acid and N-acetylglucosamine.'®
Hyaluronic acid has been utilised as a natural ligand to target
the CD44 receptor, which is overexpressed in numerous
cancer cells.¥!*1%* The hyaluronic acid CD44 receptor was
overexpressed in many tumour cells, while its low expression
was found on the epithelial surface, as shown in Figure 3.'¢%1¢*
The binding of hyaluronic acid-functionalised NLCs to CD44
initiates cellular uptake through a clathrin-independent, lipid
raft-mediated endocytic pathway.'®® Hyaluronic acid can be
internalised after enzymatic reactions with hyaluronidase
in cells. Chemical reactions can lead to the breakdown of
hyaluronic acid chains and the protonation of ammonia
groups in polyethylene imine. The positive charge of
polyethyleneimine could enhance its interaction with the cell
membrane and disrupt the lysosomal membrane.'® Therefore,
hyaluronic acid could be engineered on the surface of lipid
nanoparticles to target lung cancer cells.

Hyaluronic acid can be utilised as a negatively charged
polysaccharide that can target the CD44 protein because it
is overexpressed in NSCLC. Mahmoudi et al.'” studied the
targeting of lung cancer cells by apigenin-loaded NLCs with
hyaluronic acid as a surface modifier. The hyaluronic acid-
functionalised NLCs retain a slightly positive charge due
to cationic lipids in their formulation, which can provide
electrostatic attraction with the negatively charged cell
membrane. In addition, hyaluronic acid can bind to CD44
receptors, which are overexpressed in lung cancer cells and
facilitate active targeting of the drug-loaded nanoparticles to
tumour cells. Furthermore, the sustained release properties
of apigenin-loaded hyaluronic acid-functionalised NLCs were
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lower at pH 7.4 than at pH 5.5. These results suggested that
apigenin could be released in the specific acidic environment of
lung cancer cells rather than under basic or neutral conditions.
Moreover, compared with unmodified NLCs, functionalised
NLCs have a 1.5-fold lower IC | value and greater cellular
uptake in A549 cells. In addition, the tumour cell apoptosis rate
of A549 cells in the hyaluronic acid-functionalised NLCs group
was 36.64% greater than that in the unmodified NLCs group.
This could be influenced by the high affinity of hyaluronic

Gunawan, M., et al.

1,300-1,600 kDa, on the in vitro tumour activity of kaempferol-
loaded hyaluronic acid-functionalised NLCs (Figure 5A). Both
shorter and longer chains of hyaluronic acid could enhance
the sustained release properties due to an increased diffusion
barrier, leading to prolonged tumour cell exposure. Unlike
unmodified NLCs, surface modification with hyaluronic acid
could decrease IC,_ values. Interestingly, the lower molecular
weight of hyaluronic acid could significantly decrease the IC, |
values compared with those of the higher molecular weight

acid on the surface of NLCs for CD44 receptors in lung cancer
cells.'”® Another study revealed that compared with unmodified
NLCs, hyaluronic acid-decorated NLCs resulted in greater cell
viability. In addition, hyaluronic acid pDNA NLCs resulted in
significantly better gene transfection (approximately 40% at
72 h), with a value of only 30%, compared with unmodified
NLCs."?! Therefore, surface modification of NLCs with
hyaluronic acid may be an appropriate method for targeted
delivery in NSCLC.

(Figure 5B). In addition, an evaluation of the percentage
of A549 cells that were positive using a 5-ethynyl-2"-
deoxyuridine staining assay revealed that the lowest percentage
of positive cells was associated with the shorter hyaluronic
acid-functionalised NLCs, with a 16.20% higher percentage
than the percentages related to the longer hyaluronic acid-
functionalised NLCs (23.75%) and unmodified NLCs (40.68%).
Furthermore, the shorter hyaluronic acid-functionalised
NLCs also increased cellular uptake compared to the longer
hyaluronic acid-functionalised NLCs and unmodified NLCs

at 4 h (Figure 5C). These results suggest that hyaluronic acid,

Ma et al.'?? investigated the effects of different molecular
weights of hyaluronic acid, which are 200-400 kDa and
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Figure 5. Characterisation and anticancer effects of hyaluronic acid-functionalised nanostructured lipid carriers loaded with kaempferol.
(A) Schematic representation of kaempferol-loaded hyaluronic acid-functionalised nanostructured lipid carriers with transmission electron
microscope images indicating nanostructured lipid carriers functionalised with 20 kDa hyaluronic acid (HA, -KA-NLC) and 130 kDa hyaluronic
acid (HA ,;-KA-NLC). Scale bar: 50 nm. (B) The results of the EdU assay revealed that, compared with pure kaempferol, kaempferol-loaded
nanostructured lipid carriers significantly reduced the cell proliferation rate, with further enhancement in inhibition when functionalised with
hyaluronic acid. Among the treatments, hyaluronic acid 20 kDa-functionalised kaempferol-loaded nanostructured lipid carriers demonstrated the
most potent antitumour activity, with the lowest positive cell rate in A549 cells. Scale bar: 20 um(C) The stronger fluorescence in the hyaluronic
acid 20 kDa-functionalised curcumin nanostructured lipid carrier (HAZO—CUR—NLC) and 130 kDa-functionalised curcumin nanostructured lipid
carrier (HA , -CUR-NLC) groups highlights the enhanced cellular uptake due to hyaluronic acid, confirming its key role in tumour targeting
and penetration through CD44 receptor-mediated endocytosis in non-small cell lung cancer cells. Scale bar: 40 um. Reprinted with permission
from Ma et al."** Copyright, 2022 MDPIL.

Abbreviations: A549: human lung carcinoma cell line; CD44: cluster of differentiation 44; CUR: Curcumin; DAPI: 4’,6-diamidino-2-
phenylindole; EAU: 5-ethynyl-2’-deoxyuridine; HA, -CUR-NLC: Hyaluronic acid 20 kDa-functionalised curcumin nanostructured lipid carriers;
HA, -KA-NLC: Hyaluronic acid 20 kDa-functionalised kaempferol-loaded nanostructured lipid carriers; HA , -CUR-NLC: Hyaluronic acid
130 kDa-functionalised curcumin nanostructured lipid carriers; HA , -KA-NLC: Hyaluronic acid 130 kDa-functionalised kaempferol-loaded
nanostructured lipid carriers; KA: Kaempferol; NLCs: Nanostructured lipid carriers.
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which has a relatively low molecular weight, had the best
antitumour activity. This might be caused by the shorter chains
of hyaluronic acid, which CD44 receptors in lung cancer cells
could recognise more than the longer chains, leading to greater
intracellular accumulation and internalization.'**

Despite the presence of the targeting ligand, hyaluronic
acid-functionalised NLCs often exhibit poor accumulation
and penetration into solid tumours. This is partly due to the
dense extracellular matrix of tumours, which acts as a physical
barrier. Moreover, non-specific targeting remains a concern
due to the widespread presence of CD44 and other hyaluronic
acid receptors on healthy cells. Although these receptors are
overexpressed in lung cancer cells, their broad expression in
normal tissues can compromise targeting specificity. This can
lead to premature binding of NLCs to circulating blood cells,
significantly hindering their systemic transport and reducing
delivery efficiency to the tumour site. In addition, this non-
specific interaction contributes to off-target accumulation in
healthy organs, raising concerns about unintended toxicity and
reduced therapeutic selectivity.'”

4.3. Small molecules

Numerous small molecules, such as folic acid and biotin, can
be decorated onto the surface of lipid nanoparticles due to
the overexpression of receptors in cancer cells. This strategy
exploits the upregulated metabolic activity of cancer cells,
which often overexpress receptors for essential vitamins.
Folic acid or folate is a high-affinity ligand for the folate
receptor-, which is abundant in lung cancers but restricted
in healthy tissues. On binding, the folate-NLC conjugate is
rapidly internalised through receptor-mediated endocytosis
into an endosome (Figure 3).°! As the endosome matures,
its internal pH drops to approximately 5.0, inducing a
conformational change in the folate receptor-o. that releases
the drug from the folate-NLC. This allows the drug to escape
into the cytoplasm, while the empty receptor is recycled back
to the cell surface.'® Similarly, biotin or Vitamin B7 targets
receptors like the sodium-dependent multivitamin transporter,
which are also overexpressed on cancer cells to meet their
high metabolic demands. The binding of biotin-functionalised
NLCs triggers an analogous receptor-mediated endocytic
process, leading to the selective and efficient accumulation of
the therapeutic payload within malignant cells (Figure 3).'¢
These properties can lead to sustained release, high cellular
uptake, and internalisation through vitamin receptor-mediated
endocytosis.??!28170

4.3.1. Folic acid-based nanostructured lipid carriers

Folate decorated on the surface of docetaxel- and curcumin-
loaded NLCs was developed to improve their bioavailability
and anticancer activity against NSCLC. The in vitro release
kinetics revealed that the folate-functionalised NLCs had
sustained release properties, with 90% of the drug released
at 120 h. In addition, the IC, values of folate-functionalised
NLCs were significantly lower than those of unmodified
NLCs, which strongly indicate that surface modification with
folate could improve their cytotoxicity. Moreover, the cellular
uptake of folate-functionalised NLCs by NCI-H460 cells was
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significantly greater than that of unmodified NLCs. The
increased cellular uptake and internalisation could be caused
by the binding affinity of folate with overexpressed folate
receptors on NCI-H460 cells.'””” Similarly, paclitaxel-loaded
folate-functionalised NLCs exhibited a significantly greater
fluorescence intensity than A549 cells, which signifies the
highest cellular uptake of folate-functionalised NLCs.'
Moreover, the in vivo pharmacokinetics study revealed that
folate-functionalised NLCs could improve the bioavailability
of docetaxel by 12.39-fold compared to free drugs and 2.61-
fold compared with unmodified NLCs. Unlike unmodified
NLCs and free drugs, folate-functionalised NLCs could also
increase the tumour inhibition rate and reduce the immune
expression of mutated p53 and the cell proliferation marker
Ki67. This could be influenced by enhanced cellular uptake and
internalisation through folate receptor-mediated endocytosis
due to the overexpression of folate receptors in lung cancer
cells.'”

The main drawbacks of folate-functionalised NLCs include
heterogeneous and non-exclusive receptor expression, as folate
receptor is variably expressed across tumours and also found on
healthy tissues, including kidneys and activated macrophages,
leading to limited patient eligibility and off-target effects.'”" In
addition, endogenous circulating folates compete with folate-
functionalised NLCs for receptor binding, which can reduce
the targeting efficiency."”? Moreover, folic acid may promote
tumour growth by supplying nutrients to cancer cells. Folic
acid is an essential nutrient required for nucleotide synthesis
and DNA repair in proliferating cancer cells, and it may
promote tumour growth by supplying these critical nutrients
to the cancer cells.'”? Furthermore, variability in both ligand
density on the nanoparticle and receptor density on the cell
can lead to insufficient receptor-mediated internalisation and
prevent effective intracellular drug delivery.'”*

4.3.2. Biotin-based nanostructured lipid carriers

Taymouri et al.'”® engineered sunitinib-loaded NLCs with
biotin as a surface modification for lung cancer-targeted
treatment. The in vitro cytotoxicity results revealed that the
IC,, values of biotin-decorated NLCs were lower than those
of undecorated NLCs and free drugs. Furthermore, compared
with undecorated NLCs, biotin-decorated NLCs resulted in
greater cellular uptake by A549 cells. These results suggested
that biotin-decorated NLCs were positively charged and could
attach to negatively charged cell membranes. Therefore, the
retention time could be prolonged, and cellular uptake could
be enhanced through biotin receptor-mediated endocytosis.'?

Biotin-conjugated encounter  significant
challenges primarily due to an ambiguous cellular uptake
mechanism. The essential carboxylic acid group on biotin

required forrecognition by the sodium-dependent multivitamin

nanoparticles

transporter is typically chemically modified during conjugation.
However, the process of conjugating biotin to NLCs involves
the modification of this carboxylic acid group, which normally
forms an amide or ester bond.!”> Moreover, clinical translation
remains limited despite encouraging preclinical data due to
these mechanistic uncertainties and difficulties in developing
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stable, reproducible formulations that retain in vivo targeting
functionality.'” In addition, the widespread expression of
biotin transporters on normal tissues can reduce tumour
specificity, which can increase the risk of off-target delivery

and associated toxicities.”>!”®

4.3.3. N-acetyl-D-glucosamine-based nanostructured lipid carriers
Gemcitabine- and paclitaxel-loaded NLCs were decorated
with N-acetyl-D-glucosamine (NAG) to increase cellular
uptake and internalisation in NSCLC cells. The in vitro
cellular uptake of NLCs by A549 cells overexpressing
glucose receptors showed that NAG-decorated NLCs could
enhance cellular internalisation through glucose receptor-
mediated endocytosis. NAG could be utilised as a ligand to
target overexpressed glucose receptors in lung cancer cells.”
However, glucose transporter-targeting carries a high risk of
severe off-target toxicity, as glucose transporters are expressed
in vital organs dependent on glucose metabolism, such as the
brain and heart."”® In addition, the complexity and tissue-
specific expression of multiple glucose transporter isoforms
can limit the tumour selectivity.'””!”8

4.4. Surfactants

Surfactants can play a key role in pulmonary drug delivery
by acting as ligands that enhance drug interaction with lung
biological membranes, improving absorption, targeting, and
overcoming physiological barriers, such as mucus and cellular
defences. Their amphiphilic nature facilitates better drug
dispersion, stability, and cellular uptake within the respiratory
tract, which is especially important for effective treatment. In
addition, surfactants can help address multidrug resistance by
inhibiting drug efflux mechanisms and improving intracellular
drug accumulation, making them promising carriers for
inhalation therapies against resistant respiratory diseases and
tumours.'””* The primary mechanism involves the inhibition
of adenosine triphosphate-binding cassette efflux transporters,
such as P-glycoprotein, which are overexpressed on resistant
tumour cells and actively pump chemotherapeutic agents out
of the cytoplasm.'®!

A prominent example is d-0i-tocopheryl polyethylene glycol
1000 succinate (TPGS), a non-ionic surfactant derived from
Vitamin E with biocompatibility and permeation-enhancing
properties.” This surfactant can enhance cellular uptake
and internalisation through endocytosis and efflux inhibitor
effects.”*'®> TGPS primarily targets cellular membranes by
enhancing drug uptake through stimulation of endocytosis.
TPGS targets and destabilises the mitochondria within the
cancer cell, which can lead to mitochondrial dysfunction. In
addition, TPGS acts as an inhibitor of efflux transporters such
as P-glycoprotein, which normally pump drugs out of cells
and reduce their intracellular concentration. By inhibiting
these efflux pumps, TPGS increases the retention, intracellular
accumulation, enhanced cytotoxicity, and bioavailability of
therapeutic agents within cells. In addition, TPGS can also
increase drug solubility and control the release of drugs as well
as drug safety and efficacy, which can be utilised in the case of
multidrug resistance in various tumour cells.'®
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Sherif et al.'? studied gefitinib-loaded NLCs engineered
with TPGS for the lymphatic metastasis of lung cancer.
TPGS-decorated NLCs showed sustained release properties
for up to 12 h. The IC, value of TGPS-functionalised
NLCs against A549 cells decreased to 7.01 ug/mL, whereas
the values for the unmodified NLCs and pure drug were
15.05 ug/mL and 11.16 ug/mL, respectively, after 24 h of
incubation. Furthermore, compared to the free drug, TGPS-
functionalised NLCs could also enhance cytotoxicity and
induce cell apoptosis, significantly decreasing the number of
living cells by 58-67% (approximately threefold). TGPS, as
surfactant-decorated NLCs, could enhance the bioactivity
of gefitinib and its cellular uptake through endocytosis with
efflux inhibitor characteristics.'®

A major drawback of surfactant-functionalised NLCs is their
inherent cytotoxicity, as their ability to interact with and
disrupt lipid bilayers can damage cell membranes, resulting
in leakage and cell death.'® Moreover, exogenous surfactants
can significantly interfere with the endogenous pulmonary
surfactant layer, leading to unpredictable spreading and
deposition of drug carriers within the airways. These effects
are highly variable between patients, depending on individual
differences in surfactant composition, which can be further
influenced by disease conditions such as asthma or cystic
fibrosis.'® As a result, the amount of drug released and
absorbed in the lungs becomes unpredictable and inconsistent.

4.5. Peptides and proteins

Peptide and protein-functionalised lipid nanoparticles can
target ligands to specific sites. They function as high-affinity
ligands for specific cell surface receptors that are dysregulated
in disease. Peptides and proteins can enter the cell without
interrupting membrane integrity, enhancing receptor-
mediated endocytosis and direct translocation to improve
cellular uptake and internalization.”®®'® To date, various
peptides and proteins, such as bombesin, tuftsin, polyarginine,
wheat germ agglutinin, and transferrin, can be decorated on
the surface of lipid nanoparticles.

Bombesin is a  linear  tetra-decapeptide = with
EQRLGNQWAVGHLM that can be overexpressed in several
types of tumour cells, such as lung cancer, prostate cancer,
colon cancer, and breast cancer.'®®'® Hence, bombesin can
be a target ligand for lung cancer cells. Bombesin receptor-
targeting peptides can bind to the gastrin-releasing peptide
receptor, which is overexpressed in non-small and small cell
lung carcinoma. Tuftsin is a tetrapeptide with a sequence of
L-threonine, L-lysine, L-proline, and L-arginine that can bind
and stimulate various immune cells, such as macrophages and
dendritic cells. Therefore, tuftsin has been utilised as a surface
modifier to target macrophages.””’”® Synthetic epidermal
growth factor receptor (EGFR)-binding peptides specifically
recognise and bind to EGFRs, which are overexpressed on
lung cancer cells, triggering receptor-mediated endocytosis
to enable targeted drug delivery. Arginine-rich peptides or
polyarginine can be cell-penetrating peptides in various cancer
cells, including lung cancer cells.'® This peptide can escape
the RES and enhance cellular uptake with specific targeting
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into cells so that systemic toxicity can be reduced.'”’:'

Furthermore, the positively charged guanidinium groups on
arginine residues strongly interact with negatively charged
cell membrane components, such as proteoglycans and
phospholipids. This interaction can destabilise the membrane
for direct NLC entry into the cytoplasm or activate endocytic
pathways, thereby greatly improving intracellular delivery of
the therapeutic cargo. Moreover, transferrin can be used to
target transferrin receptors that are overexpressed in tumour
cells.'”® This receptor can be used to target and facilitate the
penetration of numerous chemotherapy drugs into cells
through endocytosis.!*

Peptides and proteins, while offering high specificity in
targeted drug delivery, present several critical disadvantages.
Their inherent instability makes them highly susceptible to
enzymatic degradation by proteases in biological fluids, leading
to rapid loss of structure, function, and in vivo activity.'**!*®
In addition, their complex 3D structures are sensitive to
physical and chemical environments, such as pH changes,
temperature fluctuations, and mechanical forces, which
can cause denaturation or aggregation, reduce efficacy, and
trigger immune responses.'” Furthermore, the large size and
hydrophilic nature of peptides and proteins hinder their ability
to penetrate biological barriers such as mucus layers and tight
epithelial junctions, which can limit their bioavailability at the
target site.'””1%

4.5.1. Bombesin-based nanostructured lipid carriers

Bombesin receptors can be overexpressed in several types
of tumour cells, including lung cancer cells. Du and Li*
investigated the effects of decoration methods incorporating
doxorubicin and DNA for lung cancer treatment, which
involved pre-assembly, where nanoparticles were prepared
with a target ligand, and post-assembly or surface modification
with a target ligand. The in vitrorelease study revealed that post-
assembly decorated NLCs were released more slowly than pre-
assembly undecorated NLCs. The IC,  values of post-assembly
were twofold, threefold, and sixfold better than those of pre-
assembly, undecorated NLCs, and free drugs, respectively. In
addition, in vitro and in vivo gene transfection studies revealed
that post-assembly had the highest transfection level at 72 h.
Similarly, the in vivo antitumour activity also revealed that
post-assembly NLCs had the highest tumour inhibition rate
of approximately 76%, which was 1.5-fold, 2.1-fold, and 5.6-
fold greater than that of pre-assembly, undecorated NLCs, and
free drugs, respectively. These results showed that compared
to pre-assembly and undecorated NLCs, post-assembly NLCs
were more effective at treating lung cancers. This could be
influenced by the electrostatic interaction between the positive
charge on the NLC’s surface and the negative charge of the cell
membrane, which enhances the targeting affinity of bombesin-
decorated NLCs and facilitates their cellular uptake through
endocytosis. However, pre-assembly bombesin-decorated
NLCs were not significantly different from undecorated NLCs
because the ligands could be encapsulated in the NLCs’ matrix
system, reducing their effectiveness and selectivity for the
target ligands.”

28

Biomaterials Translational

4.5.2. Tuftsin-based functionalised peptide

Rifampicin-loaded tuftsin-decorated NLCs were developed
by Carneiro et al'* to improve macrophage uptake and
antimycobacterial activity. In vitro release showed that lower
drug release was achieved at pH 7.4 for 72 h, with only 18%
drug release. This result suggested that release could be
affected by the lower pH of the phagolysosome, with minimum
release at non-targeted sites. Furthermore, the in vitro uptake
measurements of the mean fluorescence intensity revealed
that, compared to unmodified NLCs, peptide-functionalised
NLCs improved cellular uptake and internalisation by 2.5- and
3.6-fold, respectively, after 30 min and 24 h of incubation. Due
to its high degree of internalisation, the efficacy of peptide-
functionalised NLCs could also be enhanced twofold compared
with free drugs against M. tuberculosis. Moreover, compared
with rifampicin solution, peptide-functionalised NLCs could
also improve cell viability.'*

4.5.3. Epidermal growth factor-targeting peptide

AEYLR is a small peptide with the highest binding activity
to EGFR, which is overexpressed in NCI-H1299 cells, with a
93.09% binding rate. Therefore, the AEYLR peptide can be
utilised for targeted and selective binding due to its high affinity
for EGFR. In vitro flow cytometric analysis revealed that,
compared to unmodified NLCs, peptide-functionalised NLCs
had a greater fluorescence response. This could be influenced
by the active targeting of NLCs due to surface modification
with small peptides, which could lead to increased affinity,
enhanced cellular uptake, and stimulated cell proliferation.”®

4.5.4. CDI133+ targeting peptide

The CD133" targeting peptide with the TISWPPR sequence
was attached to the surface of the salinomycin-loaded NLCs,
whereas the AEYLR peptide was decorated on the PEG-
functionalised paclitaxel-loaded NLCs. An in vitro targeting
assay revealed that the targeting peptide could increase
the affinity of NLCs for CD133* cancer cells, resulting in
increased cellular uptake and internalisation against NCI-
H1299 and S180 cells. Furthermore, the ability of the peptide-
functionalised NLCs to inhibit cell proliferation was also
improved twofold compared with that of unmodified NLCs
and fourfold greater than that of free drugs. Moreover, an in
vivo fluorescence assay revealed that, compared to unmodified
NLCs, the targeting peptide-functionalised NLCs highly
accumulated in lung cancer cells, resulting in significantly
reduced tumour volume. This targeting mechanism could
involve passive and active targeting of lung cancer cells. For
passive targeting, NLCs could be targeted into leaky tumour
vasculature and enhance cellular uptake through EPR effects,
whereas targeting peptides could specifically bind with CD133*
receptors on cancer cells and enhance their internalisation into
tumour cells.”

4.5.5. Polyarginine

Polyarginine (R8), cell-penetrating peptide-functionalised
NLCs, was designed to enhance the cellular uptake and
cytotoxicity of paclitaxel-loaded NLCs. An in vitro cellular
uptake study in A549 cells revealed that compared to
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unmodified NLGCs, polyarginine-functionalised NLCs could
increase cellular internalisation by fourfold. This may be
attributed to the rich arginine structure with a highly positive
charge, which could be strongly attached to the negatively
charged cell membrane. In addition, the cellular uptake
mechanism of polyarginine-functionalised NLCs was mainly
endocytosis with energy, clathrin, and caveolin mediation.""

4.5.6. W heat germ agglutinin-based nanostructured lipid carriers
Hidrich et al.'®' developed wheat germ agglutinin (WGA)-
decorated NLCs to improve the cellular uptake and
internalisation of quercetin. The in vitro cellular uptake study
in J774. Al cells revealed that WGA-functionalised NLCs
improved the cellular internalisation of unmodified NLCs
and the free drug by 3.1-fold and 14.6-fold, respectively.
In addition, the fluorescence intensity increased with
increasing concentrations of drugs. There were several
potential mechanisms for cellular uptake of WGA, including
mucoadhesion followed by endocytosis.'!

4.5.7. Transferrin-functionalised nanostructured lipid carriers

Han etal."**investigated transferrinlinked to PEG-phosphatidyl-
ethanolamine conjugates as a surface modification of NLCs
to deliver gene therapy. Compared to unmodified NLCs,
transferrin-functionalised NLCs had sustained release at 72 h
and greater transfection efficiency at 48 and 72 h in vitro against
A549 cells and in vivo against A549 tumours in mice. These
results suggested that transferrin could enhance active cell
targeting to overexpress transferrin receptors in A549 solid
tumour cells.'”® Other studies also reported that transferrin-
functionalised doxorubicin and DNA exhibited increased
transfection efficiency in vivo in mice and increased tumour
inhibition rates against A549 tumour cells."** Moreover,
compared to unmodified NLCs, transferrin-decorated pDNA-
loaded NLCs had significantly greater in vitro gene transfection
efficiency in A549 cells (approximately 40% and 50% at 36
and 72 h, respectively) than unmodified NLCs (only 30%). In
addition, the dual-target ligand of transferrin and hyaluronic
acid could significantly improve gene transfection efficiency
in vitro in A549 cells and in vivo in mice.'”!

Transferrin-decorated paclitaxel and DNA-loaded NLCs can
enhance active targeting properties, improving antitumour
activity and gene transfection efficiency. Shao et al."*? studied
the effects of transferrin types with different molecular weights,
which are 5,000 and 10,000 Da. Transferrin-functionalised
NLCs had a positive charge on their surface, which could
improve their binding affinity to the cell membrane and
prolong their residence time. However, the lower molecular
weight of transferrin has a significantly greater zeta potential
and faster release than the higher molecular weight. The IC,|
values of the shorter transferrin-functionalised NLCs were
fourfold greater than those of the free drug and approximately
twofold greater than those of the longer transferrin-
functionalised NLCs and unmodified NLCs. Furthermore, the
in vivo antitumour efficacy study in NCI-H460 cell-bearing
mice also revealed that the tumour regression rate of 5,000
Da transferrin-functionalised NLCs was slower than that of
10,000 Da transferrin-functionalised NLCs and unmodified
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NLC:s. Similarly, in vitro and in vivo transfection revealed that
the highest transfection efficiency was associated with the
lower-molecular-weight of transferrin-functionalised NLCs.
This might be because the longer chain of transferrin could
block and restrict drug release.'*

4.6. Genes

Gene-targeted therapy can also be utilised in pulmonary-
targeted drug delivery systems to cure various defective genes.
Gene-based functionalisation can modulate cellular processes
at the genetic level, offering a highly specific therapeutic
approach for diseases driven by defective gene expression, such
as cancer or fibrosis. Various gene therapies, including small
interfering (si)RNAs and DNases, can mediate cell apoptosis
and gene replacement, which can enhance the drug efficacy
and restore normal gene growth regulation.'*'”” For example,
the MMP3, CCL12, and HIFIA mRNAs could be used to inhibit
lung fibrosis damage-induced proteins.'**

Small interfering RNA-NLC complexes harness the RNA
interference pathway. Once inside the cell, the siRNA is
released into the cytoplasm, where it associates with the RNA-
induced silencing complex, which uses one strand of the siRNA
to locate and degrade the matching target mRNA, blocking
protein production.”® In lung cancer therapy, this strategy
is used to overcome multidrug resistance by co-delivering
siRNAs with chemotherapy to silence genes such as MRPI
and BCL2, thereby restoring the sensitivity of cancer cells
to treatment.’”*" DNase-modified NLCs use an enzymatic
approach to bypass physical barriers, especially in treating
bacterial infections in cystic fibrosis.”>*** Pathogens, including
P. aeruginosa, form biofilms rich in extracellular DNA, which
protect them from antibiotics and immune defences. By
attaching DNase to the surface of antibiotic-loaded NLCs,
the system can break down the extracellular DNA, disrupting
the biofilm structure and enabling the NLCs to penetrate and
deliver antibiotics directly to the bacteria, greatly improving

antimicrobial effectiveness.!?’

However, gene-functionalised NLCs have
challenges that significantly limit their efficacy and safety. In
the extracellular environment, siRNA is highly unstable and is
rapidly degraded by nucleases, resulting in a serum half-life of
only minutes. Its small size, negative charge, and hydrophilicity
also make it prone to rapid clearance by renal filtration
and the reticuloendothelial system, leading to negligible
bioavailability.”* Although NLC carriers can enhance cellular
uptake through endocytosis, siRNA must still overcome the
crucial barrier of escaping the endosome to access the RNA-
induced silencing complex in the cytoplasm. Failure to achieve
endosomal escape exposes siRNA to lysosomal compartments,
undergoing enzymatic degradation. This degradation
compromises the integrity of the siRNA and results in a loss
of therapeutic activity.”*** In addition, siRNA poses safety
concerns due to off-target gene silencing caused by partial
sequence complementarity, as well as innate immune activation
through recognition by pattern recognition receptors like toll-
like receptors, potentially triggering systemic inflammation
and toxicity.?*

numerous
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4.6.1. Small interfering RNA-nanostructured lipid carrier complexes
Prostaglandin E combined with siRNA and luteinizing
hormone-releasing hormone encapsulated in NLCs can be
utilised to treat fibrosis and inflammatory lung damage.
Garbuzenko et al'*® studied three potential sequences of
siRNAs to inhibit protein synthesis in fibrotic lung damage:
the MMP3, CCL12, and HIFIA mRNAs. The prostaglandin E
and siRNA combination could significantly decrease targeted
gene expression and induce profibrotic gene expression in
mice. This could decrease lung inflammation and reduce the
3.8-fold volume of fibrotic lung tissue in mice after 3 weeks of
inhalation. The possible mechanism of the anti-inflammatory
effect of the combination of prostaglandin E and siRNA is the
use of a transforming growth factor beta inhibitor.'*

Small interfering RNAs can also be complexed with anticancer
drugs, such as doxorubicin or paclitaxel, in the NLC matrix
system. The siRNA complexes were engineered to target MRPI
and BCL2 mRNAs for pump and non-pump drug resistance
suppressors in lung cancer treatment. The in vitro cytotoxicity
results revealed that the effects of the siRNA complexes were
120-fold and 16-fold greater than those of the free drug
and unloaded siRNA, respectively. Furthermore, after 3 h
of incubation, the green fluorescence dye-labelled siRNA
complexes were highly internalised into the cytoplasm of A549
lung cancer cells. Moreover, the siRNA complexes significantly
decreased the expression of the MRPI and BCL2 genes, whereas
the unloaded siRNA increased the expression of MRPI and
BCL2. The in vivo antitumour activity of siRNA complexes also
revealed that the smallest volume or almost completely absent
tumours were found after 24 days of inhalation treatment.'*

4.6.2. DNase-functionalised nanostructured lipid carriers

DNase was incorporated into levofloxacin-loaded NLCs
to enhance levofloxacin delivery to specific sites of lung
cystic fibrosis. DNase-decorated NLCs can reduce and
disrupt the biofilm formation of S. aureus and P. aeruginosa,
leading to bacterial membrane damage and integrity loss.
The incorporation of DNase can be utilised to improve the
antimicrobial activity of levofloxacin to overcome the mucus
barrier in cystic fibrosis patients.'?’

4.7. Antibodies

Monoclonal antibodies can be used for targeted delivery
systems in various cancer treatments.””” Monoclonal antibodies
represent the highly specific targeting capable of recognizing a
single and unique epitope on a tumour-associated antigen with
exceptionally high affinity. Antibodies can enhance the binding
affinity to specific ligands, leading to prolonged retention time
and enhancing cellular uptake while minimizing off-target
sites and immunogenicity.'® Antibodies can stimulate the
immune response to eliminate cancer cells without damaging
normal cells.?”® Furthermore, antibodies can also increase the
specificity of overexpressed tumour-associated antigens.’®
Several pathways are involved in the cellular internalisation
of antibodies, such as endocytosis, transcytosis, and lysosomal
degradation.?® When functionalised to an NLC, the antibody
specifically targets cancer cells by binding to its corresponding
antigen. This triggers receptor-mediated endocytosis, allowing
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the entire nanoparticle complex to be internalised. Numerous
antibodies, such as intercellular adhesion molecule 1 ICAM-1)
and cetuximab, have been engineered to bind to the surface
of lipid nanoparticles. This can be a specific antibody that can
bind to specific overexpressed receptors in lung cancer cells,
such as the epithelial cell adhesion molecule receptor and
EGFR.!"” Figure 3 shows the mechanism of receptor-mediated
endocytosis.

The development of antibody-functionalised NLCs
still possesses significant challenges, including complex
and heterogeneous conjugation processes that affect
drug-to-antibody ratios and antibody orientation, leading to
variable efficacy and increased immunogenicity.”!! The large
size of monoclonal antibodies can limit tumour penetration due
to restricted extravasation and the binding site barrier, which
can cause uneven drug distribution and low accumulation
12 In addition, many tumour antigens
targeted by these conjugates are also expressed on normal
tissues, resulting in on-target, off-tumour toxicity and a
narrow therapeutic window.?* Furthermore, tumours can
acquire resistance through antigen downregulation, mutation,

or altered intracellular processing, which reduces treatment
214,215

within solid tumours.

effectiveness over time.

4.7.1. ICAM 1 antibody-functionalised nanostructured lipid carriers
ICAM 1 antibodies have been utilised to target simvastatin-
loaded NLCs for acute lung injury treatment. The in vitro
cellular uptake of ICAM-1 antibody-functionalised NLCs by
EAhy926 cells was greater than that of non-functionalised
NLCs. Furthermore, an in vivo study in mice revealed that
the fluorescence intensity of ICAM-1 antibody-functionalised
NLCs had a higher signal in the ICAM-1 overexpressed mice
than in healthy mice. Moreover, the highest drug accumulation
was found in the pulmonary region rather than in non-
target sites.””® Similarly, ICAM-1 antibody-functionalised
dexamethasone-loaded NLCs presented a greater mean
fluorescence intensity than IgG-functionalised NLCs did.'®
This may be influenced by the overexpression of ICAM-1 on
the cell surface, which could facilitate the active targeting of
ICAM-1 epitopes and lead to ICAM-mediated endocytosis.'**

4.7.2. Cetuximab-functionalised nanostructured lipid carriers

Guo et al'® functionalised cetuximab with paclitaxel and
5-demethylnobiletin co-loaded NLCs for synergistic treatment
of NSCLC. The in vitro cellular uptake in A549 cells revealed
that, compared to unmodified NLCs, cetuximab-functionalised
NLCs had a greater cellular internalisation efficiency of
65.8%, with a 35.5% greater cellular uptake efficiency.
Moreover, compared with the free drugs (approximately 0.6)
and unmodified NLCs (approximately 0.5), the cetuximab-
functionalised NLCs also presented the smallest combination
index values of approximately 0.4. Furthermore, the in vivo
antitumour activity of the cetuximab-functionalised NLCs was
significantly greater than that of the free drug and unmodified
NLCs. These results may be caused by the active targeting of
cetuximab to cancer cells, especially EGFR, which could induce
lung cancer cell apoptosis without destroying normal cells.!®
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4.8. pH-sensitive nanostructured lipid carriers

pH-sensitive drug delivery systems can be considered to target
lung cancer cells due to the acidic microenvironment of tumour
cells.”’® Several chemical bonds can be specifically attached to
the surface of lipid nanoparticles, such as imines, hydrazones,
oximes, amides, and acetals.'” This chemical reaction can
be responsive because it triggers acidic conditions. In other
words, the drug can be released at a lower pH of the tumour
microenvironment but is restricted to the basic or normal pH
of non-target cells.?'”?"® pH-responsive NLCs utilise the acidic
tumour microenvironment for triggered drug release through
two primary molecular mechanisms. The first involves acid-
sensitive linkers, such as hydrazones or acetals, which attach the
drug to the carrier and break down under low pH conditions to
release the drug. A hydrazone bond undergoes acid-catalyzed
hydrolysis initiated by the protonation of its imine nitrogen,
followed by a nucleophilic attack from water, leading to bond
cleavage and release of the free drug.*'*?* Similarly, an acetal
linkage is stable at neutral pH but rapidly hydrolysed in acid.
The mechanism involves protonation of an ether oxygen to
create a resonance-stabilised oxonium ion, and subsequent
attack by water to break the bond.??"?? The second mechanism
incorporates pH-responsive polymers containing ionizable
groups, such as tertiary amines. At physiological pH (7.4), these
polymers are neutral and hydrophobic. However, on entering
the acidic environment of an endosome (pH < 6.5), the amine
groups become protonated. The resulting accumulation of
positive charges creates strong electrostatic repulsion along
the polymer backbone, causing it to rapidly swell or dissolve,
physically disrupting the structure of NLCs and triggering a
burst release of its entire payload.?!¢?2%22

Doxorubicin and [-elemene were encapsulated in NLCs
with a pH-sensitive polymer, methoxy (polyethylene
glycol)  2000- hydrazone-  1,2-distearoyl-sn-glycero-3-
phosphoethanolamine. Surface modification with pH-sensitive
polymers can increase the dissolution rate under acidic
conditions (pH 5.5) and decrease the dissolution rate under basic
conditions (pH 6.8). This might be caused by conformational
changes due to pH alterations in the acidic environment
of tumour cells. An in vitro uptake and cytotoxicity study in
A549/ADR cells revealed that pH-sensitive NLCs had greater
cellular uptake and synergistic effects than non-pH-sensitive
NLCs. Furthermore, the in vivo study of A549/ADR cell-
induced mice revealed high accumulation of drugs in lung
cancer tumours and a high tumour inhibition rate of 82.9% on
day 18 after pH-sensitive NLCs administration. pH sensitivity
could enhance cellular uptake and antitumour activity due
to the acidic environment of lung cancer cells, which could
enhance the EPR effects for tumour targeting and cellular
internalisation through endocytosis.'*’

Designing effective pH-sensitive drug delivery systems requires
a careful balance where the linker must remain stable at the
physiological pH of 7.4 to prevent premature drug release
during circulation, yet cleave rapidly in acidic environments
such as tumours.?” Furthermore, pH-based targeting lacks
specificity because acidity is not unique to tumours but is also
found in sites of inflammation, infection, and within normal
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cellular compartments, including endosomes and lysosomes.
This widespread acidity can cause off-target drug release and
reduce therapeutic precision.”**”” In addition, chemical and
manufacturing limitations restrict the use of pH-sensitive
linkers because many drugs lack the necessary functional
groups for conjugation, and degradation products from these
linkers may introduce toxicity concerns, complicating clinical
development.

5. Challenges of nanostructured lipid carriers
for pulmonary-targeting delivery systems

5.1. Pulmonary-specific targeting

To reach the lateral stage of the lung, the particle size must be
small enough to reach the alveoli but not so small that they
are easily removed by the pulmonary defence system, such
as alveolar macrophages. Most pulmonary delivery systems
require devices to deliver drugs into the deeper lung region,
such as nebulisers, metered-dose inhalers, and dry powder
inhalers. The optimal particle size is 1-5 um to reach the
alveoli. Large particles are deposited in the upper respiratory
tract, whereas small particles may be lost during exhalation.
Conversely, the macrophage as a lung defence system can also
be a target for delivery; for example, M. tuberculosis, the bacteria
reside inside alveolar macrophages. Hence, delivering drugs
directly to macrophages can ensure the medication reaches
the infection site more effectively.** Alveolar macrophages can
defend against inhaled microbes and foreign particulates with a
1-3 um diameter. Macrophages can remove insoluble particles
accumulated in the alveoli by phagocytosis.?

A critical challenge specific to pulmonary delivery is the need
to formulate the NLCs into a dosage form compatible with
inhalation devices, such as nebulisers, metered-dose inhalers,
or dry powder inhalers, while maintaining the desired
aerodynamic properties for deep lung deposition.””” NLCs
must be engineered to be compatible with the chosen device
and remain stable during aerosolisation. The formulation must
withstand the mechanical stress and potential temperature
changes for nebulisers without causing the nanoparticles to
aggregate or degrade. In metered-dose inhalers, NLCs must
be compatible with the propellant to prevent coalescence or
changes in particle size. The NLCs must be formulated into a
stable solid-state powder with suitable aerodynamic properties
for dry powder inhalers to ensure efficient aerosolisation and
deep lung deposition on inhalation. The instability during
these processes can compromise the effectiveness and safety of
the therapy.*

Furthermore, a major drawback of conventional NLCs is
their low selectivity for target cells, which can lead to off-
target effects, increased toxicity, and reduced therapeutic
efficacy. The non-selective uptake by various cell types can
decrease drug deposition at the intended site and shorten
the half-life, potentially leading to ineffectiveness and the
development of multidrug resistance. Functionalisation
with specific ligands aims to overcome the non-selectivity,
but it has further complexity. A critical challenge for active
targeting is the variable level of receptor overexpression on
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target cells. For instance, lung cancer often exhibits significant
tumour heterogeneity between patients, which complicates
the effectiveness of targeted therapy. The expression of a
target receptor can differ significantly between patients,
between metastatic sites in the same patient, and even within
a single tumour. This variability presents a major challenge in
designing universally effective targeted NLCs across different
patient populations. Since therapeutic success relies on the
consistent expression of target receptors, inconsistent or low
receptor presence can limit efficacy.”

To address these challenges, combining functionalisation
agents presents a promising strategy to enhance the selectivity
of pulmonary-targeted delivery. For instance, to address the
limitations of conventional EGFR-targeted therapies for
NSCLC, which are often hindered by toxicity and resistance,
dual active and passive-targeted inhalation NLCs were
developed incorporating five essential elements. This proposed
system integrates passive lung targeting through inhalation
delivery, targeting through luteinizing
hormone-releasing hormone receptors, broad suppression
of EGFR-tyrosine kinases by the siRNA pool, induction of
apoptosis and necrosis by paclitaxel, and enhanced stability,
solubility, and cellular penetration provided by the NLCs
system. The inhalation delivery of luteinizing hormone-
releasing hormone-targeted NLCs with siRNA combined
with paclitaxel synergistically induced NSCLC cell apoptosis
and tumour growth suppression, demonstrating therapeutic
efficacy superior to either gene or chemotherapy alone. This
enhanced targeting suggests improved anticancer efficacy and
reduced side effects from the treatment.”"

active tumour

5.2. Toxicity of nanostructured lipid carriers in the lungs

Nanostructured lipid carriers consist of solid lipids, liquid lipids,
and surfactants that are biodegradable and biocompatible,
mostly categorised as “Generally Recognised as Safe.” However,
the specific choice of components and their arrangement
within the NLCs structure are primary determinants of the
cytotoxicity of formulations.”** NLCs, particularly NLCs
with positive charges, can induce cytotoxicity through direct
membrane disruption and the induction of oxidative stress,
which can subsequently lead to apoptosis and other forms
of cell death.?*® Cationic NLCs can compromise membrane
integrity and trigger harmful calcium influx through strong
electrostatic interactions with cell membranes.” The oxidative
stress from increased intracellular reactive oxygen species can
damage cellular macromolecules and may cause mitochondrial
disruption. Moreover, NLCs can also improve therapeutic
safety by localizing drugs to the lungs and minimizing
systemic toxicity, demonstrated by reduced hepatotoxicity and
improved survival in animal models. However, this localised
delivery also increases the risk of concentrated toxicity within
the lung tissue.”

5.3. Immunogenicity of nanostructured lipid carriers in
the lungs

The interaction between NLCs and the immune system is a
critical factor in their therapeutic success, particularly within
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the immunologically active environment of the lungs. Inhaled
NLCs can initiate biological interactions immediately on
deposition on the respiratory mucosa. The recognition of
the immune system for NLCs can trigger a rapid clearance by
alveolar macrophages, which limits the efficacy of inflammatory
responses that cause adverse effects.??"*

The PEGylation has been designed as stealth nanoparticles
that can reduce immune recognition and prolong circulation
time. PEGylation is intended to help NLCs penetrate the
mucus barrier and escape uptake by the RES in the liver and
spleen if they reach systemic circulation.'*® However, repeated
administration of PEGylated NLCs may lead to the development
of anti-PEG antibodies, primarily of the IgM isotype, from
stimulated B-cells in the spleen. These anti-PEG antibodies can
trigger immune responses that accelerate clearance and reduce
therapeutic efficacy.'” Therefore, the widespread preclinical
investigation of PEGylated NLCs has not translated into
numerous clinical trials for pulmonary delivery, which is likely
due to the now well-understood immunogenicity concerns.

Nanostructured lipid carriers with their surface charges
can also function as active immunomodulators, directly
influencing the behaviour of immune cells within the
lung. The interaction of NLCs with antigen-presenting
cells, including alveolar macrophages and dendritic cells,
can initiate this immunomodulation.”®® Cationic NLCs can
activate macrophages, leading to a more responsive state to
later inflammatory signals and a significant increase in pro-
inflammatory cytokines such as IL-6 and tumour necrosis
factor-alpha. This functional activation involves significant
metabolic reprogramming of the macrophages towards a pro-
inflammatory M1 phenotype.**

Surface modifications with specific ligands, such as mannose,
can also actively target immune cells. Adding a cationic lipid,
such as stearyl amine, can provide a positive charge that
enhances electrostatic interactions with cell membranes,
improving cellular uptake before mannose directs binding to
specific receptors on macrophages.””” Mannose-functionalised
cationic NLCs have been developed to target mannose
receptors on alveolar macrophages, the primary site of
M. tuberculosis infection. This active targeting strategy
enhances uptake by the target immune cells, increasing the
efficacy of antituberculosis drugs while reducing toxicity in
other lung sites.*

5.4. Production and scalability challenges

While the functionalisation of NLCs holds promise for
enhancing the effectiveness of pulmonary-targeting delivery
systems, several challenges still need to be addressed. The
quality of functionalised NLCs should be monitored during
production and storage. Most fabrication techniques in
functionalised NLCs require complex and multi-step processes,
which should be precisely controlled. NLCs can undergo
aggregation, crystallisation, or degradation during storage and
use, affecting drug delivery effectiveness.

Another challenge in the fabrication of functionalised NLCs is
that the production method must be consistently reproducible
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and can be scaled up to an industrial scale without losing the
functional characteristics of the NLCs. The main challenge in
the scale-up of NLCs production for pulmonary targeting drug
delivery systems involves the reproducibility and stability of
functionalised NLCs. In the laboratory scale, the manufacturing
process may be able to produce particles with uniform size, but
in theindustrial scale, parameters such as pressure, temperature,
and process duration must be tightly controlled to maintain
the optimal particle size distribution without aggregation or
coalescence. In addition, the physical and chemical stability of
NLCs is a major challenge because processing in large batches
can cause changes in lipid structure, decreased encapsulation
efficiency, and drug degradation, especially during storage.
Furthermore, should be
controlled and monitored to ensure that NLCs have been
functionalised in a homogenous and reproducible manner.
The optimisation of the functionalisation process involves
selecting appropriate ligands, optimising reaction conditions,
and minimising potential side effects associated with surface
modifications. Batch-to-batch reproducibility and scalability
of the functionalised NLCs are essential for their successful
application in pulmonary targeting delivery systems.

the functionalisation method

6. Case studies in clinical translation:
Nanostructured lipid carriers and related
formulations in human trials

The progression of NLCs and their lipid nanoparticle groups,
from preclinical models to human studies, marks a critical
milestone for the clinical translation of nanomedicine-based
drug delivery systems. While numerous research studies
explore their potential, only a few have initiated the rigorous
clinical evaluation process. An examination of these pioneering
trials reveals key trends in therapeutic payloads, disease
indications, and formulation strategies that are currently
defining the translational landscape.

Among the lipid-based nanoparticles in clinical development,
the AAHI-SC2 vaccine provides the most direct example of a
formulation explicitly identified as NLCs in human trials. This
formulation was investigated in the THEMBA II T-CELL
Vaccine study (NCT05370040), a Phase 1/2 trial sponsored by
ImmunityBio, Inc. (San Diego, California, United States).”*
The active component of AAHI-SC2 is a self-amplifying
RNA (saRNA) designed to encode the spike protein of the
SARS-CoV-2 virus. AAHI-SC2 demonstrates significant
clinical translational potential, supported by robust quantitative
data from preclinical studies and advancement into human
trials. Unlike conventional mRNA, saRNA contains genetic
machinery derived from an alphavirus that allows it to replicate
within the host cell, enabling robust antigen expression from a
much lower dose.”*** This high-value nucleic acid payload is
delivered through an NLC platform. A key feature of specific
NLC formulation is its exceptional thermostability. Preclinical
data that the lyophilised (freeze-dried)
saRNA-NLC vaccine maintained its immunogenicity after
storage for up to 6 months at room temperature (25°C) and
up to 10 months under refrigeration (4°C).>*! This represents
a significant logistical advantage over the stringent ultracold

demonstrated
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chain requirements of the first-generation lipid nanoparticle-
based mRNA for COVID-19 vaccines. Moreover, the
saRNA-NLC vaccine through intranasal administration
inducesover20%CD69( lung-residentCD8[ | T-cellspost-boost
in mice and maintains nasal mucosal IgA in hamsters for over
71 days. This mucosal immunity provides strong protection, as
vaccinated hamsters had no detectable infectious SARS-CoV-2
in lung tissue, and co-housed naive hamsters exposed to
infected vaccinated animals showed minimal to non-detectable
replicating virus in their airways.?*** This indicates that the
AAHI-SC2 vaccine significantly reduced viral loads, suppressed
viral replication in the respiratory tract, and protected against
SARS-CoV-2-induced lung damage. The strong preclinical
data in animal models exhibited that intranasal vaccination
generates specialised lung-resident memory T-cell populations
and protects the upper and lower respiratory tracts from viral
replication and pathology, providing the crucial preclinical
justification for advancing this approach into human trials to
assess its potential to elicit protective pulmonary immunity.

For lung cancer, one of the most advanced clinical trials
utilizing a lipid-based nanoparticle system for cancer therapy
is led by Genprex, Inc. (Austin, Texas, United States).
Their lead candidate, quaratusugene ozeplasmid (Reqorsa®,
Genprex, Inc.), is a gene therapy delivered through the
proprietary ONCOPREX® Nanoparticle Delivery System
(Genprex, Inc.). Reqorsa® is designed to combat cancer by
restoring the function of a critical tumour suppressor gene,
tumour suppressor candidate 2 (TUSC2), which is frequently
inactivated or absent in most lung cancers. The therapeutic
payload is a DNA plasmid engineered to express the TUSC2
protein. This plasmid is encapsulated within the ONCOPREX"
delivery system, a non-viral, multi-lamellar lipoplex composed
of lipid molecules that impart a net positive electrical charge.
This cationic nature is a key design feature, as it is intended
to facilitate electrostatic targeting to the negatively charged
surface of cancer cells, thereby minimizing uptake by normal
tissues. A prominent example of the clinical study for this
delivery system is the Acclaim-1 study (NCT04486833), a
Phase 1/2 clinical trial evaluating Reqorsa® in combination
with osimertinib Cambridge,
United Kingdom). Quaratusugene ozeplasmid consists of
non-viral lipid nanoparticles that encapsulate a DNA plasmid
containing the TUSC2 tumour suppressor gene, representing
a novel gene therapy approach for patients with late-stage
NSCLC through the activation of EGFR mutations. Based on
phase I clinical trials, this combination could be well tolerated,
and no dose-limiting toxicities occurred, proceeding to phase
II clinical trials, with a dose recommendation of 0.12 mg/kg.2#
In addition, the Acclaim-3 study (NCT05703971), a Phase
1/2 clinical trial, is evaluating Reqorsa® in combination with
the immune checkpoint inhibitor atezolizumab (Tecentriq®,
Roche, Basel, Switzerland) as a maintenance treatment for
patients diagnosed with extensive-stage small cell lung cancer.
This is a particularly challenging patient population with a
poor prognosis.**

(Tagrisso®, AstraZeneca,

The treatment of cystic fibrosis has also seen significant
advances, with the Food and Drug Administration approval
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of amikacin (ARIKAYCE®, Insmed Inc., Richmond, Virginia,
USA) establishing a clear regulatory path for inhaled lipid-based
nanomedicines.”** Next-generation therapies are now focused
on correcting underlying genetic defects. A notable example
is the Phase 2 clinical trial (NCT06747858) for ARCT-032, a
nebulised therapy that uses lipid nanoparticles to deliver CFTR
mRNA directly to the lungs.*** This approach, supported by
extensive preclinical work demonstrating restoration of CFTR
function in patient-derived cells and animal models, aims to
be a universal treatment independent of a patient’s specific
mutation type. Moreover, preclinical studies are demonstrating
the potential of lipid-based nanoparticles to deliver clustered
regularly interspaced short palindromic repeats-based gene
editing tools to correct cystic fibrosis-causing mutations

in vivo.2*o2

The relatively small number of functionalised NLCs that
have advanced to human trials, compared to the vast body
of promising preclinical research, highlights a significant
translational gap. This gap is largely attributable to the
formidable challenges in immunogenicity, toxicity, and scalable
manufacturing detailed in Section 5. It highlights the critical
need for future research to address these clinical translational
issues from the initial stages of formulation design to ensure
that promising preclinical candidates have a viable path to
the clinic. However, despite these challenges, the clinical
translation of NLCs and other lipid-based nanoparticles is
steadily progressing from conceptual promise to clinical
application. Although still in its early stages, emerging human
trial data provide strong evidence of their potential to reshape
therapeutic strategies for various respiratory diseases. These
early studies demonstrate the practical utility of the NLCs
platform and help define the path forward by highlighting
key factors such as formulation design, administration routes,
immune responses, and manufacturing challenges. Addressing
the remaining scientific and regulatory barriers will be essential
as the field advances. Nevertheless, the progress achieved so far
marks a pivotal moment, positioning inhaled NLCs and other
lipid nanoparticles as a transformative and patient-focused
approach in next-generation pulmonary-targeted delivery.

7. Future perspective

Numerous factors, including formulation, fabrication, surface
modification, surface engineering, characterisation, in vitro
evaluation, and invivostudies, must be considered to successfully
develop conventional or functionalised NLCs for pulmonary-
targeted delivery systems. An Ishikawa diagram for the process
development of NLCs in pulmonary targeting delivery systems
is shown in Figure 6. Various aspects can contribute to the
quality, safety, and efficacy of NLCs for pulmonary-targeted
delivery systems, including formulation, fabrication, surface
modifier types, functionalisation process, physicochemical
characteristics, and in vitro and in vivo assessments of both
unmodified and functionalised NLCs. Applying the quality by
design approach to the development of NLCs for pulmonary-
targeted delivery enables systematic control over product
quality, safety, and efficacy. The quality target product
profile defines the desired attributes, such as lung deposition
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efficiency, aerodynamic diameter, and biocompatibility, while
critical quality attributes, such as particle size, zeta potential,
and drug release, can guide formulation decisions. These
essential quality attributes are influenced by critical material
attributes—including lipid type and surfactant concentration—
and key process parameters, such as homogenisation speed and
temperature. By integrating risk assessment tools and design of
experiments, the quality by design approach can systematically
identify and control variability, ensuring reproducible quality
and enhancing the translational potential of both conventional
and functionalised NLCs.

Furthermore, integrating artificial intelligence (AI) and
machine learning (ML) is set to transform this paradigm into
a prediction-by-design workflow. Instead of simply optimising
known parameters within a limited experimental set, ML
models can analyse vast datasets from high-throughput
screening (HTS) experiments to uncover complex, non-
obvious, and multi-parameter relationships that govern the
performance of NLCs. This process begins by transforming
the chemical structures of formulation components, including
lipids and surfactants, into machine-readable formats, such
as molecular descriptors or fingerprints, using open-source
cheminformatics tools. These data are then used to train ML
algorithms to build quantitative structure-activity relationship
models to predict critical quality attributes for novel and
untested formulations, such as cellular transfection efficiency.
Subsequently, the data performance should be validated using
test sets and standardised protocols.*® A study by Cheng
et al?® utilised an ML workflow to analyse HTS data from
1,080 unique plasmid DNA lipid nanoparticle formulations
across six cell types to determine design rules for cell type-
preferential transfection. The ML models, particularly
decision-tree-based algorithms, demonstrated high accuracy
with prediction errors averaging between 5% and 10% across
the different cell types. This integrated approach of HTS and
ML successfully established quantitative structure-function
relationships to guide the design of lipid nanoparticles for
targeted cell transfection.”* Another study by Rouco et al.”*°
demonstrated the successful use of an Al model combined with
genetic algorithms to predict the optimal formulation of NLCs.
The model suggested a formulation with a particle size of
152 nm, 100% encapsulation efficiency, and 5% drug loading.
Experimental validation closely matched the prediction,
yielding nanoparticles with an encapsulation efficiency of
95.2% and 4.7% drug loading, which remained stable for at
least 1 month during storage.”® Therefore, Al algorithms and
ML utilisation in NLCs development can generate vast virtual
libraries of chemically valid and synthetically accessible lipids,
screen them in silico for desired properties, and prioritise a
small, high-potential subset for physical validation. This can
dramatically reduce the experimental burden, lower costs, and
accelerate the discovery of optimised NLCs.

Despite advances in manufacturing processes, the successful
development functionalised NLCs
for pulmonary delivery remains a significant challenge.
Transitioning from a laboratory concept to a clinically
approved therapy requires a multi-stage preclinical and clinical

of conventional or
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Figure 6. Ishikawa diagram of nanostructured lipid carrier process development for pulmonary-targeted delivery systems. Created using
Microsoft PowerPoint 365 Education (license provided by Chulalongkorn University).

Abbreviation: NLCs: Nanostructured lipid carriers.

evaluation process designed to systematically generate a
comprehensive data package on safety and efficacy. The initial
stages of the preclinical pipeline rely heavily on advanced in vitro
models, which serve as powerful, high-throughput platforms
for foundational screening and formulation optimisation.
For instance, most researchers have evaluated in vitro cellular
uptake and internalisation using A549 cell lines, which are
appropriate model cell lines for lung cancer cells. However,
3D cell lines have been widely developed and utilised to mimic
the real environment, physiological lung tissue, and specific
lung diseases.”®" A key advantage is their ability to establish an
air-liquid interface, which forces cultured respiratory cells to
differentiate, form tight junctions, and secrete mucus, thereby
better replicating the native architecture and barrier functions
of the human airway epithelium. Therefore, 3D cell lines can
be considered as more appropriate model cell lines for in vitro
cellular uptake and cytotoxicity assessment.'”” These advanced
in vitro systems offer a more biologically relevant platform
than traditional two-dimensional cultures, serving as a critical
intermediate step that can refine experimental design and
provide more predictive data before proceeding to in vivo
studies.

However, despite the significant advantages of 3D cell lines, the
most profound limitation is the absence of systemic circulation
and large variabilities.?**? It has been noted that data from
in vitro models may not always correlate well with outcomes
from subsequent invivostudies, due to differences in complexity,
including the absence of complex biological interactions, tissue

253 An in vitro model cannot

structure, and systemic effects.
provide any data on the critical parameters that govern the
fate of NLCs in the body, such as their pharmacokinetics and
biodistribution. In addition, in vitro cytotoxicity tests only assess
effects on isolated cells and cannot predict systemic toxicity in
a whole organism. In vivo studies are crucial, as they reveal how
NLCs interact with other organs, such as the liver and kidneys,
which are responsible for metabolizing and clearing foreign
substances. Therefore, progression to well-designed animal
models is an absolute necessity to bridge the gap between
promising in vitro data and clinical trials. As this review has
extensively detailed, animal models, such as those involving
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mouse lungs, remain the gold standard for evaluating the
systemic effects, biodistribution, efficacy, and toxicity of NLCs
before they can be considered for human clinical trials.

For initial efficacy screening and pharmacokinetics/
biodistribution characterisation, the orthotopic xenograft
model can be used as an appropriate lung cancer model. This
involves the direct implantation of human lung cancer cell
lines, such as A549 or NCI-H1299, into the lung parenchyma of
immunocompromised mice. These models are vastly superior
to traditional subcutaneous models because placing the tumour
in its native organ microenvironment enables researchers to
study more relevant tumour growth patterns, vascularisation,
and metastatic potential.**?*> This is particularly crucial for
testing functionalised NLCs that target receptors, such as EGFR
or folate receptors, which are overexpressed on these human
cancer cells. Moreover, genetically engineered mouse models
can be further used to develop de novo tumours in response
to the activation of specific oncogenes or the inactivation of
tumour suppressor genes, thereby closely recapitulating the
molecular drivers and progression of human lung cancer.?***’
Although more complex and time-consuming, this model can
be utilised for long-term studies of tumour evolution, the
development of drug resistance, and the efficacy of NLCs in the
genetic and histopathological features of the human disease.

According to the results of in vitro and in vivo studies in animals
with various functionalised NLCs, numerous advantages,
such as high cellular uptake and internalisation, enhanced
specificity, improved efficacy in specific cells, and reduced
toxicity in normal cells, can be achieved after NLCs are
decorated with specific ligands through surface modification.
These results are very promising for pulmonary-targeted
delivery systems. Therefore, functionalised NLCs can proceed
with clinical trials to obtain market approval. Several factors
should be considered in clinical trials of functionalised NLCs,
such as the stability of surface modifications and sufficient data
for preclinical studies, including in vitro drug release, in vitro
cellular uptake, in vivo pharmacokinetics, in vivo efficacy, and
in vivo acute and chronic toxicity studies. Hence, developing and
evaluating functionalised NLCs in clinical trials is challenging
for researchers and pharmaceutical companies. In the case
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of other major respiratory diseases, such as tuberculosis and
asthma, lipid-based nanoparticle therapies are in the early
stages of development but show significant promise. While
specific clinical trials for NLCs are still emerging, the robust
preclinical data for formulations, such as mannosylated NLCs
for tuberculosis, provide a strong foundation for future clinical
investigation. In asthma, advanced preclinical research is
focused on engineering targeted lipid-based nanoparticles
to deliver siRNA to T-cells, aiming to modulate the specific
immune responses that drive the disease. The clinical success
of NLCs in various pulmonary disease applications provides
a strong rationale and a clear roadmap for advancing these
promising candidates into human trials.

8. Limitations

This review provides a comprehensive overview of
conventional and functionalised NLCs for pulmonary delivery.
However, certain limitations should be acknowledged.
A significant limitation in this field is the substantial reliance
on preclinical data. Most evidence for the efficacy and safety of
conventional and functionalised NLCs is derived from in vitro
cell culture models and in vivo animal studies. Although these
models are essential for initial development, their results do
not always translate directly to human clinical outcomes. This
limitation is reflected in the clinical translation section, which
reveals that only a few functionalisation strategies discussed
in the review have advanced to human trials. Therefore, the
review highlights the gap between the numerous promising
preclinical findings and the limited number of formulations
based on NLCs that have advanced to human clinical trials.

9. Conclusions

Nanostructured lipid carriers can be potential vehicles for
pulmonary-targeted drug delivery systems to treat numerous
lung-related diseases, such as asthma, COPD, cystic fibrosis,
tuberculosis, and acute lung injury. Conventional NLCs can
be utilised to directly target the lungs through EPR effects.
However, the low selectivity of unmodified NLCs can lead to
ineffectiveness and high potential systemic toxicity. Therefore,
surface modifications can be engineered with numerous
ligands, such as hydrophilic polymers, polysaccharides, peptides
and proteins, small molecules, surfactants, genes, antibodies,
and pH-sensitive polymers. In general, surface modification
can improve the binding affinity for specific target ligands on
the surface of the cell membrane. This can lead to prolonged
retention time and receptor-mediated endocytosis, enhancing
cellular uptake and internalisation. Various in vitro and in vivo
animal studies have shown that, compared with unmodified
NLCs, functionalised NLCs can improve selectivity, safety, and
efficacy through active targeting to specific lung disease sites.
Despite various challenges, such as drug delivery efficiency,
safety concerns, immunogenicity, and the complexity of large-
scale manufacturing, which have restricted the progression of
many formulations to further studies, the available preclinical
data consistently demonstrate promising therapeutic potential.
These early-stage findings highlight the feasibility and
effectiveness of NLCs in pulmonary delivery systems, which
strongly indicates their promise for future clinical translation.
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