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1. Introduction

Vision is widely regarded as the most vital sensory 
modality as it plays an integral role in our daily 
lives, making vision impairment caused by eye 
diseases particularly impactful and debilitating. 
According to the World Health Organization 
database, an estimated 2.2 billion people suffer 
from near or distance vision impairment, of 
which 1 billion cases could have been prevented 
with appropriate intervention.1 Among these 

preventable cases, cataracts account for 94 million, 
uncorrected refractive errors for 88 million, and 
age-related macular degeneration, glaucoma, 
and diabetic retinopathy for 8 million, 7 million, 
and 4 million cases, respectively. Globally, the 
prevalence of ocular diseases has been observed 
to increase as the population grows. In addition, 
vision impairment has reportedly resulted in an 
economic burden of US$411 billion.2 As such, 
the need for solutions to combat vision loss has 
gained increasing traction.
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ophthalmic therapies that are more effective, safer, and more targeted. Among 
existing treatment strategies, ocular drug delivery systems provide a non-invasive 
route for administering medications directly to ocular tissues. However, their 
clinical effectiveness is often compromised by various anatomical and physiological 
barriers, including tear turnover, blinking, nasolacrimal drainage, and blood-ocular 
barriers, which limit drug retention time and significantly reduce bioavailability. 
In response to these challenges, the application of nanomedicine has emerged as a 
highly promising strategy to improve ocular drug delivery. This review presents 
recent advances in drug nanodelivery systems – such as dendrimers, liposomes, 
nanoemulsion, solid lipid nanoparticles, in situ gel formulations, exosomes, metal-
organic frameworks, and nanocrystals – that have demonstrated advantages in 
enhancing drug solubility, prolonging drug release, improving corneal penetration, 
and reducing dosing frequency and systemic side effects. In addition, the integration 
of artificial intelligence (AI) and personalized medicine in the development and 
optimization of ocular nanomedicine is explored. AI tools such as predictive 
modeling, machine learning algorithms, and data-driven formulation strategies 
remain underutilized in ophthalmology, yet they offer tremendous potential to 
accelerate innovation, individualize treatment, and enhance clinical translation. This 
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of safer and more efficient drug nanodelivery systems but also the incorporation 
of AI to transform ocular drug delivery into a more precise and patient-centered 
approach.
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Patients have preferred topical delivery of ocular drugs as the 
drug administration method over others, such as intraocular 
delivery and intravitreal injection. This preference could be 
attributed to the ease of non-invasive administration and better 
patient adherence. Nevertheless, the distinctive structure and 
function of the eye significantly limit the absorption of ocular 
medications, with bioavailability often being below 5%. The 
primary obstacles hindering progress in drug delivery are the 
static ocular barriers located within the posterior and anterior 
segments of the eye (Figure 1).3 Developing effective strategies 
to bypass these barriers has been a longstanding challenge for 
researchers.

In response to these challenges, drug nanodelivery systems 
have emerged as a novel drug delivery method. Nanodelivery 
systems offer several advantages, such as prolonged ocular 
residence times, increased corneal permeability, and sustained 
drug release, making them an attractive drug delivery modality. 
This review explores various drug nanodelivery systems, such 
as microemulsions, solid lipid nanoparticles, nanoemulsions, 
liposomes, in situ gels, dendrimers, exosomes, metal-organic 
frameworks (MOF), and nanocrystals, designed to overcome 
the challenges caused by the eye’s anatomy and physiology 
(Figure 2).

2. Barriers to ocular delivery

The human eye functions as a sensory organ responsible for 
detecting and processing visual input. The eye consists primarily 
of two regions, the posterior and anterior segments. The cornea, 
conjunctiva, ciliary body, aqueous humor, and lens collectively 
form the anterior segment of the eye. The posterior segment 
consists of the retina, sclera, and choroid. Following topical 
drug administration, the majority of the active ingredients are 
eliminated by the precorneal tear film.4 The tear film consists 
of a lipid layer and an aqueous mucous layer; the amphiphilic 
properties of the tear film hinder the penetration of purely 
hydrophilic and hydrophobic substances. Despite being the 
most widely utilized method for ocular drug delivery, topical 
administration suffers from low bioavailability (1 – 5%) in 
the anterior segment due to the combined effects of tear film 
clearance and eyelid blinking. These physiological factors not 
only limit drug absorption but may also necessitate frequent 
dosing to maintain therapeutic levels. Furthermore, nasolacrimal 
drainage into the systemic circulation after instillation could also 
result in decreased bioavailability and undesired side effects.5 
The administration process may induce irritation or discomfort, 
triggering reflex tear flow that further decreases drug retention 
and negatively impacts patient compliance.

The three principal layers of the cornea include the epithelium, 
stroma, and endothelium. The cornea is a negatively charged 
membrane at physiological pH; thus, positively charged 
molecules can penetrate the cornea more easily than negatively 

charged molecules. The corneal epithelium is composed of 
basal cells, wing cells, and squamous cells, all of which are 
interconnected by tight junctions that restrict the diffusion of 
larger molecules. The endothelium is notably hydrophobic and 
is the most significant barrier to drug penetration. Positioned 
between the aqueous humor and the stroma, the corneal 
endothelium facilitates the transport of macromolecules 
between these layers. The endothelium, like the epithelium, 
is hydrophobic and consists of tightly packed cells, albeit it is 
formed by a monolayer of flattened epithelial-like cells. The 
epithelium and endothelium form the blood-aqueous barrier, 
which serves to limit the selective diffusion of different solutes 
through the neighboring cells.6 In contrast to the corneal 
epithelium and endothelium, the stroma is hydrophilic and 
is formed by tightly packed collagen. The hydrophilic nature 
of the stroma allows it to serve as a barrier, preventing 
hydrophobic molecules from passing deeper into the eye. This 
biphasic environment indicates that the cornea requires ocular 
formulations with amphipathic properties and dual-phase 
solubility for ocular administration.

The conjunctiva is another part of the anterior segment. It is 
a transparent and thin membrane, which has been noted to be 
more permeable to drugs than the cornea. Hydrophilic drugs 
are more permeable to the conjunctiva, though it is uncertain 
whether hydrophobic drugs are less permeable. The ciliary 
body, composed of smooth muscle, serves two key roles: The 
secretion of aqueous humor – which delivers nutrients to 
avascular tissues and regulates intraocular pressure – and waste 
drainage from the cornea and lens, including ocular drugs. 
Drug elimination in the anterior segment is facilitated by the 
aqueous humor turnover, which is secreted by the ciliary body.

Similar to the anterior segment, drug delivery to the posterior 
segment of the eye is challenging due to the presence of multiple 
barriers. The sclera, the white outer layer of the eye, is a long 
tissue located slightly below the conjunctiva. It is primarily 
made up of an extracellular matrix consisting of collagen fibrils 
and glycoproteins.7 Compared to the cornea, the sclera permits 
greater solute diffusion, mainly through transscleral diffusion, 
allowing larger molecules to traverse the porous spaces within 
the collagen structure, which ranges in diameter from 25 to 
300 nm. It is important to note that transscleral permeability 
is significantly affected by molecular charge, with negatively 
charged molecules exhibiting higher permeability through 
the sclera compared to positively charged ones. The choroid, 
found between the sclera and retina, contains a dense network 
of capillaries and is reinforced by the Bruch’s membrane. It is a 
vascular tissue that mainly supplies nutrients to the retina. The 
Bruch’s membrane-choroid complex acts as a stronger barrier 
to drug delivery than the sclera through the transscleral route. 
It is also more selective than the sclera, as solutions tend to 
bind to the tissue, thereby reducing overall drug efficiency.8
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The retina is a transparent, thin layer of photoreceptor cells 
situated in the innermost region of the eye. It consists of the 
inner neural retina and the retinal pigment epithelium. The 
retina has been observed to progressively hinder the entry 
of larger molecules due to the multiple layers that form the 
retinal pigment epithelium and inner neural retina.9 Table 1 
provides a summary of the major ocular barriers in the anterior 
and posterior segments that restrict drug penetration and 
bioavailability.

3. Types of nanodelivery systems used in 

ocular therapy

3.1. Dendrimers

Dendrimers are a class of star-shaped, nano-sized polymers 
with a branching web-like structure. They possess a 
terminal end group on each branch that can be modified 
for functionalization. They are mainly used to increase the 
specificity of compounds by altering the pharmacokinetic and 
pharmacodynamic properties of a drug.10 For ocular delivery, 
specifically, it is effective when incorporated into hydrogels 
and when combined with polyethylene glycol groups, using 
it primarily for targeted drug delivery.11 Figure 3 shows 
the most used structural basis for dendrimers, which is the 
poly(amidoamine) structure. The most common synthesis 
methods for dendrimers are categorized into convergent, 
divergent, or click chemistry approaches. For the divergent 
method, several monomeric modules are assembled and added 

to a core site, allowing it to grow and build outward in a 
branch-upon-branch structure according to certain dendritic 
rules and principles. However, there are several drawbacks to 
this method, such as side or incomplete reactions, resulting 
in structural defects.12 To overcome these drawbacks, the 
convergent method was created, whereby several dendrons 
are reacted with a multi-functional core to form a dendrimer. 
Although the convergent method mitigated the issue regarding 
structural defects, it also possesses several challenges, including 
limited reactivity between the dendrons and the molecular 
nucleus due to distance, and decreased reactivity of the central 

Figure 2. Overview of drug nanodelivery systems explored in this 
review for ocular drug delivery, each offering specific advantages 
in enhancing ocular drug bioavailability and retention. Artwork 
generated with ChatGPT and external design tools.

Figure 1. Anatomical barriers to ocular drug delivery. The illustration categorizes key components of the anterior and posterior eye segments 
that hinder effective drug transport, such as the tear film, cornea, and retina. Understanding these physiological barriers is crucial for designing 
efficient ocular delivery strategies. Artwork created with BioRender (https://BioRender.com/n50y555).

Table 1. Ocular barriers of the eye

Segments of the eye Description

Posterior segment of the eye

Retina Hinders the entry of large molecules due to 
multiple layers

Sclera Permeability is predicated on the charge of the 
molecule

Choroid Part of the Bruch’s membrane-choroid complex, 
which acts as an entry barrier

Anterior segment of the eye

Cornea Corneal epithelium hampers large molecules. 
Corneal endothelium is similar to epithelium and 
forms the blood-aqueous barrier

Stroma Hinders the entry of hydrophobic molecules

Conjunctiva Seemingly more permeable to hydrophilic drugs

Ciliary body Secretes aqueous humor and drains drugs from 
the cornea and lens

Aqueous humor Aqueous humor turnover eliminates drugs

Tear film Amphiphilic properties of the tear film hinder 
the penetration of ocular drugs

Figure 3. General architecture of a poly(amidoamine) dendrimer, 
highlighting its branched structure and drug-encapsulating interior. 
Artwork created with BioRender (https://BioRender.com/n50y555).
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dendrons.13 Click chemistry involves the use of copper to join 
azides and alkyne to synthesize well-defined dendrimers with 
excellent purity and high yield.14

The treatment of diabetic retinopathy often involves 
invasive procedures, such as intravitreal implants delivering 
dexamethasone into the eye or intravitreal injections of anti-
vascular endothelial growth factor agents. These approaches 
carry risks of ocular damage, and multiple intravitreal 
injections may reduce patient compliance. To overcome 
this issue, Alshammari et al.15 used poly(amidoamine) 
(PAMAM) dendrimer as a carrier and observed its effects 
on the ocular bioavailability of the investigational drug 
ruboxistaurin – a novel drug developed to combat diabetic 
retinopathy by acting as a protein kinase C beta inhibitor and 
inhibiting vascular endothelial growth factor release. Invasive 
drug delivery systems, such as direct injections to the eye, 
were avoided in this study in favor of non-invasive PAMAM 
dendrimer nanoparticles, which were designed to improve 
patient compliance. The PAMAM dendrimer nanoparticles 
demonstrated favorable drug release profiles and improved 
stability, and were also theorized to improve patient adherence 
by reducing the complications associated with invasive delivery 
methods.

Wang et al.
16 formulated novel dendrimer hydrogel particles as 

a drug delivery carrier for anti-glaucoma drugs, brimonidine 
tartrate, and timolol maleate. The gel particles in the study 
presented several advantages, such as low toxicity, the ability 
to overcome the drug barriers of the eye, and minimal 
ocular irritation. Compared to plain drug solutions, the 
nanostructured dendrimer hydrogel particles demonstrated 
stronger corneal permeation and a greater decrease in 
intraocular pressure. Among the three dendrimer hydrogel 
particles that were tested (one nanostructured dendrimer 
hydrogel particle formulation and two micronized dendrimer 
hydrogel particles), the nanostructured dendrimer hydrogel 
particle demonstrated stronger efficacy. Hence, the study 
suggests its potential use as a carrier for other drugs.

3.2. Liposomes

Liposomes are artificial vesicles that consist of one or more 
phospholipid bilayers that enclose an aqueous core. Based on 
its size, it can be categorized into small unilamellar vesicles 
(10 nm – 100 nm), large unilamellar vesicles (100 nm – 1 μm), 
and giant unilamellar vesicles (1 μm or above). Unilamellar 
vesicles have one lipid bilayer surrounding their aqueous 
core, whereas multilamellar vesicles have one or more lipid 
bilayers,17 as displayed in Figure 4.

Liposomes have the capacity to encapsulate both hydrophilic 
and hydrophobic drugs, enabling their cellular uptake through 
endocytosis. Their dual ability to carry these substances 
makes them highly suitable for ocular drug delivery systems. 
Liposomes have demonstrated great efficacy in their ocular 
delivery to the posterior and anterior segments of the eye. 
In ocular drug delivery, liposomes offer additional benefits, 
including extended drug retention and minimal toxicity. 
However, a notable drawback lies in their low bioadhesiveness, 
which affects their ocular permeation. This hurdle can be 

overcome via the integration of bioadhesive polymers such as 
chitosan.18,19

Lai et al.
20 addressed the low stability of chrysophanol 

and berberine hydrochloride, compounds that have been 
recognized for their potential use in treating age-related 
macular degeneration.21,22 A combination of liposomes and 
polyamidoamine dendrimer (polyamidoamine 3.0) was used 
as a carrier for both these drugs. The results demonstrated an 
improvement in the bioavailability of berberine hydrochloride 
over chrysophanol–berberine hydrochloride suspension. 
In addition, polyamidoamine-coated liposomes were found 
to protect against photooxidative stress. However, their 
effectiveness against age-related macular degeneration requires 
further investigation using models specifically designed for 
this condition.

3.3. Nanoemulsions

Nanoemulsions are heterogeneous dispersions of two 
immiscible liquids and are composed of water, oil, surfactants, 
and co-surfactants either as oil droplets in water (o/w) 
nanoemulsion or water droplets in oil (w/o) nanoemulsion 
(Figure 5). Nanoemulsions serve as colloidal drug carriers, 
with droplet sizes typically ranging between 100 and 
500 nm. Nanoemulsions differ from microemulsions in their 
preparation method. The preparation of nanoemulsions 
involves the use of thermal and/or mechanical energy, 
making them less thermodynamically stable. To improve 
stability, nanoemulsions are often paired with co-surfactants.23 
Nanoemulsions are preferred over their micro counterparts 
due to enhanced bioavailability, longer drug residence time, 
and smaller droplet size, leading to better corneal penetration. 

Figure 4. Comparison between unilamellar and multilamellar 
liposomes showing variations in bilayer configuration. Artwork 
created with BioRender (https://BioRender.com/n50y555).

Figure 5. Visualization of oil in water and water in oil nanoemulsion 
types. The emulsions are stabilized by surfactant molecules 
that orient at the oil-water interface, with the system type 
determined by the dispersed phase. Artwork created with BioRender 
(https://BioRender.com/n50y555).
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Nanoemulsions can be prepared using two approaches: 
High-energy and low-energy methods. The high-energy 
method involves mixing the oil, water, and surfactant for 
a sufficient amount of time; the resulting macroemulsion 
then undergoes homogenization until a suitable droplet 
size is achieved.24,25 An example of a low-energy method is 
the phase inversion temperature method, whereby changes 
in the temperature cause changes in the spontaneous 
curvatures of the surfactant. An o/w emulsion undergoes a 
phase transition as the temperature rises and water is added, 
resulting in the formation of water droplets dispersed within 
the oil phase.

Nanoemulsions are commonly used in ocular drug delivery 
to improve the retention and bioavailability of hydrophobic 
or poorly retained drugs. Moxifloxacin, a drug noted for its 
use in the treatment of bacterial conjunctivitis, is limited by 
its short residence time in the eye.26 Youssef et al.

27 developed 
a moxifloxacin-loaded nanoemulsion formulation as well as a 
mucoadhesive variant and compared them to the commercially 
available solution. The formulations demonstrated improved 
permeability of moxifloxacin and increased drug residence 
time. The mucoadhesive variant was suggested to increase 
patient compliance by reducing the frequency of dosing.

3.4. Cationic nanoemulsions

Cationic nanoemulsions are biphasic formulations 
characterized by positively charged nanodroplets in a 
continuous phase. For example, in an o/w nanoemulsion, 
positively charged oil droplets are dispersed within the 
aqueous phase.28 To maximize electrostatic attraction, cationic 
nanoemulsions are formulated with positively charged 
nanodroplets that interact with the negatively charged ocular 
mucosa. These interactions have been found to prolong 
drug retention in the eye, thereby enhancing therapeutic 
effectiveness.29 Concerns regarding cationic nanoemulsions 
include possible irritation and toxicity due to overuse of the 
cationic charge inducer.30,31

To address the solubility limitations of non-steroidal anti-
inflammatory drugs in the treatment of dry eye disease, Jurišić 
Dukovski et al.32 developed an ibuprofen-loaded cationic 
nanoemulsion. The cationic o/w nanoemulsion was proven 
to have sufficient stability, improved drug residence time, 
and good biocompatibility. Another aim of the study was to 
stabilize the tear film layer, which is often compromised in dry 
eye disease.33,34 This was achieved through the destabilization 
of the nanoemulsion on encountering the tear film. The oil 
droplets in the nanoemulsion merged with the tear film lipid 
layer, while the surfactants integrated into the mucous layer, 
thereby restoring the tear film’s integrity.

Rifampicin is one of the most potent treatments for ocular 
tuberculosis; however, its clinical utility is hindered by poor 
solubility in aqueous media.35 To address this limitation, 
Bazán Henostroza et al.

36 investigated a cationic nanoemulsion 
loaded with rifampicin. The cationic rifampicin nanoemulsion 
demonstrated improved drug bioavailability, preserved 
antimicrobial properties, and enhanced patient quality of life 
due to reduced frequency of product instillation.

3.5. Solid lipid nanocarriers

Solid lipid nanocarriers are classified into two types: Solid 
lipid nanoparticles and nanostructured lipid carriers. The 
key distinction between them is their composition at room 
temperature. Solid lipid nanocarriers consist of lipids that 
remain solid, while nanostructured lipid carriers contain a 
combination of solid and liquid lipids.37

Solid lipid nanocarriers are commonly prepared using 
high-pressure homogenization, solvent emulsification-
evaporation, or microemulsion techniques. The high-pressure 
homogenization method involves using high pressure to push 
a liquid through a narrow gap, exposing the fluid to shear stress 
and cavitation forces, causing the particles to break down. The 
solvent emulsification-evaporation method entails dissolving 
soluble lipids in a water-immiscible organic solvent, followed 
by emulsification in an aqueous phase using high-pressure 
homogenization. Following homogenization, the solvent is 
evaporated through stirring at room temperature, resulting 
in the formation of lipid nanoparticles. The microemulsion 
method involves combining a low-melting-point fatty acid, an 
emulsifier, and water at a temperature above the melting point 
of the fatty acid. The mixture is then placed in cold water and 
continuously stirred.38

3.5.1. Solid lipid nanoparticles

Solid lipid nanoparticles are composed of a solid lipid matrix 
dispersed in an aqueous medium, stabilized by a surfactant 
layer. Their formulation typically includes biocompatible solid 
lipids such as fatty acids, fatty alcohols, glycerol esters, and 
waxes.39 The layer of surfactants helps stabilize the formulation 
by reducing interfacial energy between the lipid and aqueous 
phases during the preparation of solid lipid nanoparticles. Key 
benefits include low toxicity due to the use of safe excipients, a 
low production cost, and ease of large-scale production.40

Khames et al.
41

 tested natamycin-loaded solid lipid nanoparticles 
to address the poor corneal penetration of natamycin, which 
is used to combat keratitis. The findings indicated that 
natamycin-loaded solid lipid nanoparticles exhibited enhanced 
efficacy compared to conventional natamycin administration, 
demonstrating extended drug release and superior antifungal 
activity against the primary fungal pathogens responsible for 
keratitis.42,43

3.5.2. Nanostructured lipid carriers

Nanostructured lipid carriers were developed to overcome 
the instability issues associated with solid lipid nanoparticles. 
Nanostructured lipid carriers exhibit a higher loading capacity 
and stability, as they impede the recrystallization of solid lipids, 
thus preventing drug expulsion during storage.44 Notably, 
nanostructured lipid carriers have been predominantly utilized 
for the delivery of antifungal agents.45

Lactoferrin, a protein found in the immune system, is known to 
possess antifungal effects and stimulate corneal wound healing 
via the activation of toll-like receptors.46 Varela-Fernández 
et al.47 synthesized lactoferrin-loaded nanostructured lipid 
carriers and determined their efficacy in keratoconus 



6 www.biomat-trans.com

Nanomedicine for ocular drug delivery 
Biomaterials Translational

treatment. The resulting formulation exhibited low toxicity, 
sustained release of lactoferrin compared to a lactoferrin-
buffered solution, and high stability for up to 3 months.

3.6. In situ gelling system

In situ gelling systems are liquid formulations that release 
encapsulated drugs upon undergoing a solution-to-gel 
transition when applied to a specific site, such as the eye, in 
ocular drug delivery.48 The solution-gel phase transition is based 
on physiological conditions such as changes in temperature, 
the introduction of ions, or changes in pH.49,50 It functions 
similarly to photocages, which also release encapsulated drugs 
in response to stimuli (a specific wavelength of light).51

3.6.1. Thermosensitive in situ gel

Thermosensitive in situ gelling systems are typically single-
phase, solution-like systems in an aqueous medium that 
incorporate thermosensitive polymers containing both 
hydrophobic and hydrophilic segments.52,53 These systems 
undergo a phase transition in response to changes in 
temperature. When exposed to temperatures above the 
lower critical solution temperature, the balance between the 
hydrophobic and hydrophilic parts is disrupted, leading to 
polymer-polymer interactions and resulting in the solution-gel 
phase transition (Figure 6).54-56

Mahboobian et al.
56 investigated the use of polymers Carbopol 

934 and Pluronic F127, combined with hydroxypropyl 
methylcellulose to create a thermosensitive in situ nano gel 
for flurbiprofen, a notably insoluble non-steroidal anti-
inflammatory agent.57 Carbopol 934 and Pluronic F127 
were reported to enhance gel strength and solubility, 
respectively.58-60 The flurbiprofen nanosuspension, prepared 
using hydroxypropyl methylcellulose, was spray-dried to obtain 
a dry powder formulation designed to enhance solubility. 
The resulting in situ nano gel formulation demonstrated 
increased drug and corneal residence times for the flurbiprofen 
nanosuspension and showed good gelation at physiological 
temperatures.

Wang et al.
61 synthesized a combination of thermosensitive in 

situ gel using carbon dots. Carbon dots have recently garnered 
traction in the medical field due to their good biocompatibility, 
low toxicity, and solubility in water.62 Diclofenac sodium, a 
non-steroidal anti-inflammatory drug characterized by low 

ocular bioavailability, was incorporated into the system.63 
The drug delivery system showed potential by minimizing 
tear elimination, prolonging drug release, and enhancing the 
bioavailability of diclofenac sodium.

3.6.2. Ion-sensitive in situ gel

Ion-responsive polymers in ion-sensitive in situ gelling 
systems typically contain ionizable groups.64,65 These polymers 
undergo cross-linking with monovalent or divalent cations 
present in lacrimal fluid, where electrostatic interactions 
between anionic polymer chains and cations induce a solution-
to-gel transformation.66 The resulting viscosity of the gel is 
influenced by the concentration of available cations.67

Luteolin, a natural flavonoid, has been investigated for its 
potential benefits in eye health, particularly in managing dry 
eye disorder.68 Omran et al.69 developed a carrageenan-based 
ion-sensitive in situ gel by incorporating oleophytocubosomes. 
Oleophytocubosomes are small, negatively charged particles with 
high entrapment efficiency70 for the delivery of luteolin. The 
ion-sensitive in situ gel combined with oleophytocubosomes 
showed sustained drug release, enhanced anti-glaucoma 
effects, and improved anti-inflammatory effects.

3.6.3. pH-sensitive in situ gel

The gelation behavior of pH-sensitive in situ gel is determined 
by the measure of acidity, pKa, of the polymer.71,72 The 
pH-sensitive polymers are usually either weakly acidic or 
weakly basic. The solution-gel transition occurs when the pH 
falls below the pKa value of the weakly acidic polymer and vice 
versa for the weakly basic polymer.73,74

As glaucoma remains a persistent clinical challenge, one of the 
primary treatment strategies involves reducing intraocular 
pressure.75,76 The poor bioavailability of the anti-glaucoma 
drug, betaxolol hydrochloride,77,78 in commercial eye drops 
has prompted the search for more effective ways to administer 
betaxolol hydrochloride to the eye. Allam et al.

79 used niosomes 
to encapsulate betaxolol hydrochloride combined with a 
pH-sensitive in situ gel. Niosomes are a type of colloidal delivery 
system similar to liposomes.80,81 The resulting formulation 
demonstrated better drug release compared to niosomes or the 
pH-sensitive in situ gel alone. Additionally, the bioavailability 
and residence time of betaxolol hydrochloride were increased 
by the formulation when compared to the commercially 
available eye drops. This innovative delivery system shows 
promise and may be further explored for its potential in 
managing glaucoma.

4. Other advancements

Exosomes are double-membrane vesicles secreted by cells that 
carry molecules such as DNA to target cells. Exosomes can also 
be engineered and modified to transport drugs to targeted cells. 
They have been noted to possess several desirable qualities in 
terms of ocular drug delivery, such as low cytotoxicity, high 
drug residence time, good targeting capacity, high drug loading 
capacity, and low immunogenicity.82 A study conducted by 
Cao et al.

83
 utilized a microvascular endothelial cell model 

to study the therapeutic effects of using exosomes derived 

Figure 6. Visual demonstration of a temperature-responsive in situ 
gel system before (left) and after gelation (right). Upon exposure to 
physiological temperatures, the solution transitions into a gel phase, 
which prolongs ocular residence and enables sustained drug release.
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from mesenchymal stem cells for the treatment of diabetic 
retinopathy. In this study, endothelial-mesenchymal transition 
and tube formation, processes associated with diabetic 
retinopathy, were identified through specific molecular 
markers. It was found that exosomes were able to suppress 
both endothelial-mesenchymal transition and tube formation 
by interacting with the microRNA-34a-5p/X-box binding 
protein 1 signaling pathway, indicating a potential use in the 
treatment of diabetic retinopathy.

Nanocrystals are nanoparticles that comprise 100% of the 
crystalline drug after undergoing either the top-down or 
bottom-up method. A simplified explanation is illustrated in 
Figure 7. The top-down method is based on the reduction 
in particle size, whereas the bottom-up method is based on 
building up molecules into small particles. Nanocrystals have 
been proposed for potential use in ocular applications due to 
their nanoscale dimensions, which contribute to improved 
permeability and drug bioavailability.

Nanocrystal-based ocular formulations are a relatively novel 
concept and have not been fully explored. Kalam et al.84 
investigated the potential of nanocrystals for tetragonal 
zirconia polycrystals, a novel 5-hydroxymethyl-oxazolidinone 
antibiotic. Tetragonal zirconia polycrystals-nanocrystals were 
found to have higher solubility in stimulated tear fluid, which 
indicated superior permeation and bioavailability of tetragonal 
zirconia polycrystals.

MOFs consist of organic linkers and interconnected metal 
ions to form a porous structure (Figure 8). Nano-sized MOFs 
possess a high drug loading capacity due to their porous 
structure. Synthetic modifications of MOFs can enhance their 

targeting capacity and stability.85 Gupta et al.
86

 investigated 
the potential of MOFs for ocular drug delivery by testing 
a mucoadhesive MOF loaded with timolol maleate for the 
treatment of glaucoma. The study’s results demonstrated 
sustained release of timolol maleate, as well as improved drug 
bioavailability and easy degradation in the eye, resulting in 
minimal side effects. These results indicate a potential use for 
MOFs as a drug carrier for other ocular drugs.

5. Role of artificial intelligence (AI)

In recent years, AI and machine learning have emerged as 
new tools to potentially facilitate the development of ocular 
drug nanodelivery systems. At a time when the development 
of novel drug formulations has been observed to be too time-
consuming, expensive, and unpredictable, computational 
pharmaceutics has emerged as a promising approach to reduce 
this burden by utilizing in silico modeling and simulation. The 
use of AI and machine learning for the development of drug 
formulations offers several advantages, such as low costs and 
the elimination of ethical concerns associated with animal 
testing.

He et al.87 collected data on the size and polydispersity index 
of drug nanocrystals to construct prediction models using 
various machine learning algorithms, such as deep neural 
networks, decision trees, and light gradient boosting machine. 
The machine learning algorithms were trained on three 
different preparation methods (ball wet milling, high-pressure 
homogenization, and antisolvent precipitation). The data used 
for training was split into three subsets: 80% of the data was 
used to construct the models, 10% was used for tuning the 

Figure 8. Conceptual workflow of metal-organic framework synthesis and post-synthetic drug loading. Their tunable porosity, high surface 
area, and modifiability support their use as advanced ocular drug carriers. Artwork created with ChatGPT and design tools.

Figure 7. Schematic illustration of two synthetic routes to generate drug nanocrystals: size reduction (top-down) and molecular assembly 
(bottom-up). Both techniques aim to improve solubility and drug delivery performance in ocular formulations.
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model hyperparameters to ensure accuracy, and the remaining 
data was used as a test set for the constructed model against 
unfamiliar data. The results showed that the light gradient 
boosting machine displayed the best accuracy among all the 
other models. The model’s efficacy in predicting the outcomes 
of the high-pressure homogenization method indicates a 
potential application for accurately forecasting the size and 
polydispersity index of ocular nanocarriers, including solid 
lipid nanoparticles, utilizing this method.

German et al.88
 utilized a preexisting quasi-three-dimensional 

model, which had individual eye segments separated into their 
own domains. The model was able to simulate the topical 
administration of eyedrops, pharmacokinetics, the physiology 
of aqueous humor flow, and intraocular pressure levels. 
The study built upon the quasi-three-dimensional model by 
constructing the anterior segment of the eye, including the 
conjunctiva, cornea, aqueous humor, ciliary body, and the lens, 
and simulating drug loss due to tear film turnover. The model 
was developed using in vivo studies in a rabbit eye model to 
observe the temporal distribution of timolol in the anterior 
segment. After validating the model for the rabbit’s eye, 
they altered it to simulate the eye of a human. The predicted 
distribution over the course of 400 min was similar to the rabbit. 
The intraocular pressure and its reduction via application of 
timolol were simulated using an equation from a prior study 
conducted by a separate team, and the simulated results were 
compared to the actual results from said study. The intraocular 
pressure results demonstrated a similar pattern over 400 min 
to the one conducted by the separate team, with a slight 
under-prediction, which could be attributed to the remaining 
timolol concentration in the aqueous humor, preventing the 
intraocular pressure from returning to baseline. Although the 
results were satisfactory, the author noted the limitations of 
the model, as other factors that impact the pharmacokinetics 
of the eye, such as blinking, were not implemented. Regardless, 
the model demonstrates potential future use in ocular drug 
nanodelivery as a more ethical alternative to the use of animal 
models to study drug residence times.

6. Potential in personalized medicine

Personalized medicine, also known as precision medicine, 
considers a patient’s unique information, such as their 
genetic profile, lifestyle data, current medical condition, and 
environmental exposure, to tailor a personalized treatment 
strategy.89,90 In ophthalmology, recent studies have utilized 
printing technologies to construct ocular inserts containing 
the nanodrug for ocular administration or to use nanoparticles 
as bioinks for printing onto contact lenses.

Tetyczka et al.91 utilized inkjet printing of itraconazole 
nanocrystals onto commercially available soft hydrogel 
contact lenses. Nanocrystals were determined to be ideal, 
given their good mucoadhesion to the membranes of the 
eye and the implications of a dual drug release profile in 
previous studies. Inkjet printing enables personalized dosages 
by delivering picoliter-scale droplets with high accuracy. 
The optimal formulation was compared to bulk itraconazole 
and demonstrated superior performance, attributed to the 

nanoscale reduction of itraconazole, which enhanced drug 
solubility and improved inkjet printability. In addition, a dual 
drug release was observed after 8 h. Notably, visual clarity was 
preserved by intentionally excluding ink deposition in the 
central zone of the lens, protecting the pupil.

7. Conclusions

Despite the numerous hurdles that ocular barriers pose for drug 
administration, the various nanodelivery systems highlighted 
in this review demonstrate their efficiency and potential for 
administering drugs to the eye. Although significant strides 
have been made in nano-based topical drug delivery, future 
research should focus on improving formulation stability, 
sustaining drug release, enhancing bioavailability, and ensuring 
non-toxicity of the mentioned ocular drug delivery systems. 
Further studies on machine learning are necessary to improve 
the efficacy of in silico modeling, as it has been demonstrated to 
be a promising step forward for ophthalmology.
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