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1. Introduction

The repair of critical bone defects represents a 
significant challenge for surgeons. If the length of 
the bone defect is greater than 2 cm or the defect 
area is more than half the circumference of the 
bone, it is impossible to achieve spontaneous 
healing. These bone defects are categorised into 
critical bone defects and osteoporotic fractures 
are a common cause of critical bone defects.1,2 
With increasing age, the body undergoes cellular 
senescence, slow metabolism, the development 
of chronic inflammation, diminished hormone 
levels, and degradation of vascular function 
(Figure 1), which senesces the skeleton and 
leads to osteoporosis. Osteoporosis is a group 
of systemic bone diseases, mainly characterised 
by a decrease in bone density and bone mass, 
leading to increased bone fragility.3,4 According 

to statistics, about 18.3% of the global population 
suffers from osteoporosis.5 osteoporosis 
often presents with clinical symptoms such as 
decreased height, painful aches and pains, and 
fragility fractures (Figure 2). When osteoporosis 
occurs, bone regeneration and healing are 
further slowed down. With the advancement 
in technology, transportation, and the ageing 
population, the prevalence of fractures caused 
by trauma and bone tumours is increasing every 
year, which often leads to bone defects in case 
of inappropriate treatment.6,7 Bones have a 
good regenerative repair ability, and most bone 
defects can heal spontaneously without surgery. 
In many cases, critical bone defects necessitate 
surgical intervention. Although autologous 
bone grafting is the clinical gold standard for 
treating bone defects, its use in clinical practice is 
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limited by insufficient sources, deformed healing of the donor 
site, secondary trauma, and secondary infection.8,9 When 
osteoporosis occur, the quality of life of patients is significantly 
impaired, which would increase the health care burden on 
the patient’s family and the whole country. Hence, there is an 
urgent demand for new protocols for the treatment of bone 
defects.

In recent years, it has been demonstrated that elemental 
magnesium and magnesium-based biomaterials play an 
important role in the treatment of bone defects, providing new 
ideas for the repair of bone defects. As one of the most important 
elements in the organism, magnesium, with a relative atomic 
mass of 24.31 and an atomic symbol of Mg2+, ranks 4th in the 
human body with a content of about 25 g. Further, 60–65% 
of magnesium ions are distributed in bones and teeth, and 
they exert significant effects on regulating energy metabolism 

and maintaining cellular homeostasis and life health.10,11 
The concentration of magnesium ions in the blood is below 
1%, which indicates that some patients with normal serum 
magnesium ion concentrations (0.75–1.25 mM) may exhibit 
magnesium deficiency. Magnesium ions or magnesium-
containing biomaterials such as magnesium ions, magnesium 
wiresmagnesium alloy wires, magnesium mesh, magnesium 
cardiovascular scaffolds have also been used in many studies.12-15 
Magnesium ions in the body can promote the proliferation and 
differentiation of osteoblasts and bone marrow mesenchymal 
stem cells (BMSCs), as well as the formation of new blood 
vessels, which contributes to maintaining bone health and 
preventing osteoporosis.16,17 Therefore, magnesium and 
magnesium-based biomaterials are of great significance for 
bone repair and have received much attention.18 The terms 
“magnesium”, “magnesium ion”, “Mg”, “bone”, “osteoporosis”, 
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Figure 1. Common causes of bone ageing. Created with BioRender.com.

Figure 2. Common clinical manifestations of osteoporosis. Created with BioRender.com.
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“bone fracture”, “bone defect”, “drug delivery system”, 
“nanomaterials”, “hydrogel”, “bioalloy scaffold”, “implant”, and 
“screw” were searched in terms of the number of citations, 
journals, impact factor, and related articles of our group. The 
related articles of our group were then screened to identify 
potential journals for consideration. This article reviews the 
role and mechanism of elemental magnesium and magnesium-
based biomaterials in bone repair.

2. Role and mechanisms of magnesium ions in 

bone health 

2.1. Modulation of magnesium ions for bone health

Magnesium ions are essential mineral elements in the human 
body, with the content being second only to potassium ions at 
the intracellular level. Magnesium ions are involved in more 
than 300 known enzymatic reactions and play an important role 
in living organisms.19 Magnesium ions are also the second most 
abundant cation in the cell, usually in concentrations of 10–30 
mmol. The U.S. Food and Nutrition Board has established 
the recommended daily intake of magnesium ions for men 
and women at 420 mg and 320 mg, respectively. Following 
ingestion, magnesium ions are absorbed and excreted primarily 
in the intestines and kidneys.20,21 An intake of magnesium 
ions in excess of the body’s excretion capacity can result in 
hypermagnesaemia, which may present clinically as nausea, 
vomiting, cutaneous vasodilatation, headache, hyperreflexia 
and lethargy.22 The relationship between daily magnesium 
intake and maintenance of bone health has been confirmed in a 
previous study.23 These effects of magnesium can be explained 
that magnesium ions are required for many enzymatic reactions 
concerning the metabolism and processing of vitamin D in the 
body. A deficiency in magnesium ions can lead to a decrease 
in the concentration of 1,25(OH)2-vitamin D.24 Besides, a 
decrease in the concentration of magnesium in the blood can 
result in a decrease in the secretion of parathyroid hormone, 
which leads to a decrease in the concentration of calcium in 
the blood.25,26

 Bone healing is a dynamic and complex process 
that requires the interplay of osteoclasts and osteoblasts. 
Magnesium ions in appropriate concentrations (50–200 ppm) 
can effectively promote the proliferation and differentiation 
of osteoblasts, significantly accelerating new bone formation.27 
Studies have shown that Wnt signalling pathway,28 Notch 
signalling pathway,29 and phosphatidylinositol 3 kinase/
protein kinase B (PI3K/AKT) signalling pathway30 play 
important roles in magnesium ion promotion of related cell 
proliferation and osteogenic differentiation (Figure 3). At the 
same time, magnesium ions can increase the expression level 
of osteoprotegerin in serum, cause osteoprotegerin to bind 
to receptor activator of nuclear factor-κ B ligand (RANKL), 
competitively inhibit the binding of RANKL to receptor 
activator of nuclear factor-kappa B (RANK), regulate the 
osteoprotegerin-RANK-RANKL signalling pathway, and 
inhibit osteoclast differentiation.31

 Some researchers also 
revealed that when 10 mM magnesium ions were applied 
to MC3T3-E1 cells in combination with type I collagen, the 
expression of osteogenic markers (osteopontin, osteocalcin, 
alkaline phosphatase, Runt-related transcription factor 2, and 

bone morphogenetic protein 2 (BMP-2)) was up-regulated and 
the osteogenic capacity was enhanced.32 Chang et al.33 conducted 
a meta-analysis on the relationship between the serum 
concentration of magnesium ions and osteoporosis. They found 
that the concentration of magnesium ions was lower in female 
patients with postmenopausal osteoporosis. This may be due to 
the fact that when the diet is deficient in magnesium, it can lead 
to a decrease in osteoblasts and an increase in osteoclasts, which 
may induce a higher possibility of bone fragility and aggravate 
osteoporosis.34,35 Although magnesium deficiencies exert 
adverse effects on osteoblast formation and bone metabolism, 
this effect can be reversed by magnesium supplementation. 
Hence, the long-term oral supplementation of magnesium 
increases bone mineral density in osteoporotic patients.36 
In order to explore the synergistic effect of magnesium ions 
with other ions, some scholars combined magnesium ions, 
calcium ions, and namely silicate (Si) in MC3T3-E1 cells. 
They found that the adhesion effect of MC3T3-E1 cells was 
significantly enhanced under the tri-ion action.37 Angiogenesis 
plays an important role in bone regeneration and repair, and 
magnesium ions can promote osteoblast differentiation by 
enhancing the secretion of platelet-derived growth factor-BB 
by MC3T3-E1 cells, as well as the angiogenic capacity of human 
umbilical vein endothelial cells.38 Qin et al.39 confirmed that 5 
mM magnesium ions up-regulated the expression of hypoxia-
inducible factor 1α and endothelial nitric oxide synthase 
(eNOS), which promoted the vascular differentiation of 
BMSCs. Mg coating was added to the surface of Ti6Al4V, and 
in vitro experiments showed that Mg-coated Ti6Al4V increased 
the gene expression of hypoxia-inducible factor 1α and vascular 
endothelial growth factor (VEGF) in human umbilical vein 
endothelial cells, and angiography demonstrated a significant 
increase in the number and volume of blood vessels around the 
Mg-coated Ti6Al4V scaffolds.40

 The function of immune cells 
is intimately linked to the processes of bone homeostasis and 
bone regeneration.41

 Macrophages have an important role in 
the immune response, with a pro-inflammatory M1 phenotype 
and an anti-inflammatory and regenerative M2 phenotype. 
It has been demonstrated that magnesium-containing bio-
biomaterials can reduce macrophage CD86 expression and 
inhibit M1 polarisation.42 Another study showed that in the 
presence of magnesium ions, the expression of CD206 (a marker 
of M2 polarisation) was increased, promoting macrophage 
M2 polarisation, while magnesium ions significantly reduced 
interleukin-1β production in the inflammatory state.43

In conclusion, magnesium ions are closely related to human 
bone health and have been validated to be beneficial to 
osteoblast growth and bone metabolism in both cellular and 
clinical studies (Figure 4). Therefore, many researchers have 
integrated magnesium ions into therapeutic strategies for 
the treatment of bone defects. Besides, they have developed 
magnesium-based biomaterials using different carriers and 
applied them to bone repair with favourable outcomes.

2.2. Modulation of bone regeneration by magnesium-

loaded hydrogels

During the process of bone regeneration and repair, the 
extracellular matrix plays an important role in mediating 
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the signalling, material exchange aspects and cell growth 
between the new bone tissue and the original bone tissue. 
Hydrogels are often prepared from natural polymers such as 
gelatin, chitosan and hyaluronic acid. They are biomaterials 
that share structural similarities with extracellular matrices. 
These biomaterials are commonly used in tissue regeneration 
owing to their biodegradability, biocompatibility, and high 
porosity.44,45 Hydrogels are capable of transporting drugs 
or seed cells that can act on bone defects and expedite their 
repair.46 In recent years, magnesium-containing hydrogels 
prepared by combining the advantages of magnesium ions and 
hydrogels have made good progress in the field of bone tissue 
engineering.

Chen et al.47 constructed an injectable hydrogel of chitosan 
functionalised with creatine phosphate containing 5 mg/mL 
magnesium oxide nanoparticles (CSMP-MgO (5)) was used, 
Alizarin Red S staining showed larger red-stained areas, and 
angiogenesis experiments showed denser vascular networks, 
indicating that the osteogenic-induced differentiation ability 
and angiogenesis of CSMP-MgO (5) were the strongest, and 
when it was applied to the rat cranial bone defects, micro-
computed tomography (CT) and histological sections also 
reflected the good osteogenic effect of CSMP-MgO (5) 
(Figure 5). Zhang et al.48 developed a magnesium-containing 
double cross-linked hydrogel by combining gelatin, chitosan, 
and oligomeric silsesquioxane nanoparticles with magnesium 
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Magnesium
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Neighbour cell

Figure 3. Magnesium ions promote relevant cell proliferation and osteogenic differentiation through activation of PI3K/AKT, Wnt, and Notch 
signalling pathway. Created with Biorender.com. Abbreviations: Akt: Protein kinase B; APC: Adenomatous polyposis coli; Axin: Axis inhibitor; 
CKIα: Casein kinase Iα; GSK-3β: Glycogen synthase kinase-3β; LEF: T-cell factor/lymphoid enhancer factor; LRP: Lipoprotein receptor related 
protein; mTORC1: Mammalian target of rapamycin complex 1; NICD: Notch intracellular domain; PI3K: Phosphatidylinositol 3 kinase; Rheb: 
Ras homolog enriched in brain; TCF: T-cell factor; TF: Transcription factor; TSC1/2: Tuberous sclerosis complex 1/2. 

Osteoporosis

Magnesium deficiency Magnesium supplementation

Bone health

Osteogenic ↑
Angiogenesis ↑

Figure 4. The role of magnesium ions in bone health. Created with BioRender.com. Abbreviation: BMD: bone mineral density.
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ions. Immunohistochemical experiments demonstrated that 
the hydrogel up-regulated the angiogenesis marker CD31, 
which accelerated the repair of bone defects by promoting 
angiogenesis. In cases of acute bone defects, reactive oxygen 
species produced by damaged bone tissues can exacerbate 
osteoclast damage. Loading magnesium ions combined with 
C-propylpyrogallol[4]arene into the hydrogel can enhance 
antioxidant capacity and accelerate bone defect repair.49 Xu et 
al.50 designed a hydrogel containing black phosphorus gelatin 
methacryloyl modified by magnesium ions. The hydrogel 
mimicked the special structure of the periosteum. The 
experimental results showed that this hydrogel contributed 
to bone defect repair by promoting periosteal neurogenesis 
and angiogenesis. Xiong et al.51 developed a dual-network 
structure hydrogel containing magnesium ions and BMP-2. 
The hydrogel dissociated and bound magnesium ions locally 
by ligand bonding, resulting in the slow release of magnesium 
ions. The hydrogel accelerated the repair of bone defects 
through the synergistic effect of magnesium ions and BMP-2 
(Figure 6). Some scholars have loaded magnesium ions and 
stromal cell-derived factor 1αinto a hydrogel. Specifically, 
stromal cell-derived factor 1 is released to recruit BMSCs 
around the bone defect. Then, magnesium ions are released 
to promote the osteogenic differentiation of BMSCs, thus 
promoting the repair of bone defects.52 Although hydrogels 
have the advantages of good biosafety, biocompatibility and 
biodegradability, the lack of mechanical strength of hydrogels 
limits their large-scale use. Incorporation of nanoparticles in 
hydrogels can increase the mechanical properties of hydrogels. 
Some scholars added MgO nanoparticles into the hydrogel, 

and the results of compression experiments showed that the 
stress increased with the increase of the concentration of MgO 
nanoparticles, indicating that MgO nanoparticles enhanced 
the mechanical properties of the hydrogel. Meanwhile, the 
slowly released magnesium ions from this hydrogel acted on 
the BMSCs around the defect to promote their proliferation 
and osteogenic differentiation, and ultimately accelerated bone 
regeneration.53 The regenerative capacity of bones decreases in 
patients with osteoporosis. To address this problem, inspired 
by the attraction of magnets to metals, Zhao et al.54 developed 
an injectable hydrogel that can capture magnesium ions. This 
bone-targeting hydrogel enhanced the repair of osteoporotic 
bone defects by activating osteoclasts and vascular endothelial 
cells through the slow release of magnesium ions. 

Hydrogels can be loaded to skow the release of drugs, 
thereby acting on surrounding tissues, which would improve 
therapeutic efficacy and drug utilisation.46 Although hydrogels 
are not mechanically strong enough,55 they can be used as local 
bone fillers and may be employed to carry bioactive substances 
to accelerate bone repair.

2.3. The role of the magnesium ion delivery system in 

bone regulation 

Owing to its favourable biosafety and simple design, the drug 
delivery system can provide sustained release of drugs over 
a period, which conduces to better efficacy and fewer side 
effects.56,57 In recent years, drug delivery systems have attracted 
much attention for their injectability and minimally invasive 
operability, particularly in the treatment of orthopaedic 
conditions.58 Figure 7 summarises the nanomaterials used in 
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Figure 5. Magnesium oxide nanoparticle-coordinated phosphate-functionalised chitosan injectable hydrogel for osteogenesis and angiogenesis 
in bone regeneration. (A)Alizarin red staining of MC3T3 cells cultured in magnesium-containing hydrogel. (B) Micro-CT scanning of 
magnesium-containing hydrogel implanted into cranial defects in rats. (C1) H&E stained images of cranial defects in rats implanted with 
magnesium-containing hydrogel. (C2) Immunohistochemical stained images of cranial defects in rats implanted with magnesium-containing 
hydrogel. Reprinted from Chen et al.47 Copyright 2022, American Chemical Society. Abbreviations: CSMP: Phosphate-functionalized 
methacryloyl chitosan; CT: Computed tomography; H&E: Haematoxylin-eosin; HB: Host bone; MgO: Magnesium oxide; NB: New regenerated 
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orthopaedic related diseases, including liposomes, polymeric 
nanoparticles, exosomes, nanogels, magnetic nanoparticles, 
mesoporous nanoparticles, and gold nanoparticles. In view 
of the significant role of magnesium ions in promoting 
the proliferation and osteogenic differentiation of BMSCs, 
inhibiting osteoclast differentiation, promoting the generation 
of neovascularisation, regulating macrophage polarisation and 
inhibiting the production of inflammatory factors, scholars 
have attempted to use a delivery system carrying magnesium 

ions to promote bone regeneration and repair, and have 
achieved satisfactory efficacy in animal experiments.

Tan et al.59 prepared an injectable bone cement based on 
magnesium-containing microspheres that provided sufficient 
space and decelerated the release of magnesium ions while 
supporting bone defects. Animal experiments showed that 
Mg-containing microspheres significantly facilitated the repair 
of cranial defects in rats while inducing the polarisation of 
M2-type macrophages. Poly(lactide-co-glycolide) (PLGA) 
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Figure 6. The fabrication of a highly efficient hydrogel based on a functionalised double network loaded with magnesium ion and BMP2 for 
bone defect synergistic treatment. (A) ALP staining and ARS staining analysis showed that CS-BP/PAM/Mg2+-BMP2 hydrogel promoted 
BMSC osteogenesis. (B) HE staining of the newly formed bone at 12-week post-operation. (C1) Immunohistochemistry of OCN in the newly 
formed bone 12 weeks. (C2) The relative quantitative expression statistics for OCN immunohistochemistry.  Reprinted from Xiong et al.51 
Copyright 2021, Elsevier B.V. *P < 0.05; **P < 0.01, vs. control. Abbreviations: ALP: Alkaline phosphatase; ARS: Alizarin Red S; BMP2: Bone 
morphogenetic protein 2; COL-I: Collagen type I; CS-BP: Chitosan-bisphosphonate; HE: Haematoxylin-eosin; Mg2+: Magnesium ion; OCN: 
Osteocalcin; OPN: Osteopontin; PAM: Poly (acrylamide). 
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delivery systems can be employed as vehicles for the 
administration of a variety of macromolecules, including 
drugs, proteins, and other therapeutic agents, in the context 
of disease treatment. Yuan et al.60 used PLGA microspheres 
coated with MgO and magnesium carbonate (MgCO3) 
to fabricate PMg microspheres, which up-regulated the 
expression of alkaline phosphatase, osteocalcin, osteopontin, 
and collagen type I genes in BMSCs in vitro, thus promoting 
the osteogenic differentiation of these cells. The injection 
of these PMg microspheres into the rat cranial bone defect 
model significantly promoted bone regeneration. The PLGA 
microspheres containing magnesium ions and icariin were 
also found to significantly promote bone defect repair after 
16 weeks of implantation into a critical bone defect (8 mm in 
diameter) in the rat skull.61 Lin et al.62 prepared magnesium-
containing PLGA/alginate core-shell microspheres using a 
microfluidic system, which could control the slow release 
of 50 ppm magnesium ions within 2 weeks, thus effectively 
promoting the healing of femoral defects in rats within 
eight weeks. It has been demonstrated that PLGA/MgO-
alendronate microsphere particles can enhance the expression 
of IL-10, BMP-2, and transforming growth factor-β, promote 
the maintenance of M2 macrophage phenotype, regulate the 
bone immune microenvironment, and facilitate the healing 
of bone defects in rats.63 Integration of PLGA into different 
biomaterials and optimisation of delivery modalities, including 
topical injections, intravascular injections, hydrogels, and 
three-dimensional-printed scaffolds to facilitate efficient 
transport of PLGA in the bone, would be one of the ways to 
enhance therapeutic efficiency (Figure 8). Recently, smaller 
nano-delivery systems have been highlighted due to their 
ability to facilitate slow drug release, reduce clearance rates, 
and enhance drug penetration, while also providing superior 
bone targets. of note, this statement is purely objective and 
does not contain any subjective evaluation.64,65 Although 
drug delivery system have achieved satisfactory results in the 
repair of bone defects,66 there is limited research on the use 
of magnesium-loaded drug delivery system for bone repair. 

Enhancing the bone-targeting effect of the delivery system 
allows for precise delivery of the delivery system to bone tissue, 
which can result in a significant increase in drug concentration 
in the therapeutic area, as well as a reduction in the impact on 
non-targeted tissues, and a prolongation of the drug’s in vivo 
circulation time, which can further increase the therapeutic 
efficiency of the drug delivery system (Figure 9). Magnesium-
loaded drug delivery systems show promise for treating skeletal 
diseases, particularly osteoporosis. Local injection can facilitate 
the slow release of magnesium ions in the treatment of bone 
defects and other conditions.

3. The role and mechanism of magnesium-

based bioalloy scaffolds for bone repair 

3.1. Characteristics of magnesium-based bioalloy scaffolds

Magnesium is a light, silvery-white metal discovered by 
Sir Humphry Davy in 1808. Michael Faraday succeeded in 
producing magnesium metals.67 In the 1900s, Payr proposed 
biodegradable bioactive magnesium alloys for orthopaedic 
applications.68 Since then, the research into bioactive 
magnesium material implants has continued for nearly a 
century. The use of magnesium-based implants has been 
demonstrated to offer a number of advantages over those 
based on other common metals, such as titanium alloys and 
stainless steel alloys. Firstly, magnesium alloy can circumvent 
the necessity for secondary removal of the internal fixation 
system subsequent to implantation, due to its favourable 
biodegradability. This results in a reduction of secondary 
trauma to the patient and thus facilitates bone healing.69 
Secondly, magnesium alloys have favourable biosafety and 
bone-enhancing properties (Figure 10). The degradation 
of magnesium alloys mainly produces magnesium ions and 
hydrogen. Magnesium ions promote osteogenesis,70 while 
hydrogen has anti-inflammatory properties71 and can inhibit 
bone resorption.72 Thirdly, This material exhibits robust 
mechanical properties. The density of magnesium alloys (1.74–
2.0 g/cm3) is similar to that of human bone (1.8–2.1 g/cm3), 

Magnesium ions

Figure 8. PLGA systemic delivery and local delivery (direct injection, hydrogel, scaffold material) for the treatment of osteoporosis, fractures, 
and bone defects. Created with BioRender.com. Abbreviations: Mg2+: Magnesium ion; PLGA: Poly(lactide-co-glycolide).
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while the Young’s modulus of magnesium alloys (10–45 GPa) 
is also comparable to that of human cortical bone (3–20 GPa), 
thus effectively avoiding stress masking.73

3.2. Application of magnesium-based bioalloy scaffolds

Magnesium-based bioalloy scaffolds have been gradually 
applied in orthopaedics in clinical practice. Zhao et al.74 
combined magnesium scaffolds with polycaprolactone and 
prepared a polycaprolactone/Mg composite scaffold using 
three-dimensional printing, which was implanted into rat 
cranial defects. The micro-CT results demonstrated that the 
polycaprolactone/Mg composite scaffold group had better 
bone volume/tissue volume, trabecular number, trabecular 
separation, and trabecular thickness than the single scaffold 
group. Zhang et al.75 developed a new magnesium alloy 
scaffold by adding Mn to the AZ31 magnesium alloy scaffold. 

The in vitro experimental results demonstrated that this new 
alloy significantly enhanced the proliferation, adhesion, and 
differentiation of cells. Besides, the in vivo experimental 
results also showed that it accelerated the repair of bone 
defects. In contrast, the AZ31 scaffold also exhibited a 
good ability to repair bone defects. After the repair of a 
large segmental femoral defect (1 cm in length) in rabbits 
for 8 weeks, positive results were observed.76 In animal 
models of bone defects at different ages, it was observed 
that magnesium scaffolds degraded at a faster rate in older 
rats. However, no significant difference was observed 
in the effect of bone defect healing between both ages.77 
Scholars fabricated some porous magnesium alloy scaffolds 
(porosity 75%) using the hot-press sintering process. They 
then implanted these scaffolds at the femoral defects of 
osteoporotic rats for 4 weeks. The results of micro-CT 

B

Figure 9. Preparation and application of bone targeted delivery systems. Created with BioRender.com. Abbreviations: CXCR4: C-X-C 
Chemokine receptor 4; OB: Osteoblast; OC: Osteoclast. 
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Figure 10. Cell biological behaviour of magnesium ions, a degradation product of magnesium alloys. Created with BioRender.com. Abbreviations: 
BMSC: Bone marrow mesenchymal stem cell; Mg: Magnesium.
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and histological staining tests showed that these scaffolds 
promoted the repair of osteoporotic bone defects through 
the Wnt/β-catenin signalling pathway.78 The results would 
be more accurate if the new bone could be extracted for 
mechanistic testing. Considering that inorganic components 
such as calcium and phosphorus make up the majority of 
bone tissue, it is not easy to extract proteins, and performing 
immunohistochemical staining of paraffin sections can 
also reflect mechanistic changes to a certain extent. RNA 
sequencing of bone tissue has also been progressively 
reported.3 and appropriate use of this technology will help to 
increase understanding and knowledge of magnesium alloy-
regulated bone regeneration. Magnesium alloy scaffolds 
loaded with zoledronic acid were implanted into bone defects 
to result in the release of magnesium ions and zoledronic 
acid. This inhibited osteoclasts while activating osteoblasts, 
leading to an improved healing rate of osteoporotic bone 
defects.7 Magnesium-based bioalloy scaffolds present 
promising results in treating bone defects in animal models 
and have been used in clinical practice.

Clinical internal fixation devices are preferably made of 
titanium, stainless steel, and other inert materials. However, 
these materials can interfere with bone growth due to tissue 
irritation and infection.79 Magnesium screws used in fracture 
fixation can meet clinical healing standards and degrade within 
one year, avoiding the requirement for surgical removal.80 
Owing to the avoidance of a secondary removal procedure, 
magnesium alloy metal implants are gradually accepted by 
clinicians. Ding et al.81 designed a degradable magnesium alloy 
bionic cannulated screw) and compared its biomechanical 
properties with those of a titanium alloy cannulated screw and 
a titanium alloy bionic cannulated screwusing finite element 
analysis. In a meta-analysis of resorbable magnesium alloys 
versus conventional titanium screws for the treatment of 
distal metatarsal osteotomies, magnesium alloys were found 
to have comparable treatment outcomes to titanium alloys.82 
This finding from this meta-analysis of magnesium-based 
implants was also supported by existing literature reports. In a 
study involving 20 patients with ankle fractures, a magnesium-
based implant (ZX00 screw) was implanted with a medical 
follow-up for 12 weeks. Imaging results showed favourable 
fracture healing in all patients, with no fractures occurring 
during screw degradation. The American Orthopaedic Foot 
and Ankle Society score for these patients was 92.5.83 Klauser 
et al.84 conducted a study on magnesium alloy screw fixation in 
100 patients with bunion osteotomies. Most patients were able 
to walk with weight 6 weeks after surgery. The magnesium 
alloy group did not show any significant abnormalities in 
terms of wound healing and infection rate compared with the 
group treated with titanium alloy screws. Acar et al.85 employed 
medial condylar osteotomy to treat talus chondromalacia. In 
their study, 11 patients were fixed with resorbable magnesium 
screws and another 11 patients with peptide screws. The mean 
follow-up period was 20.7 ± 8.9 months. The magnesium 
screws gradually degraded, but none of the patients in either 
group experienced displacement or deformity healing. There 
was no significant difference in the healing rate and daily 
function between the two groups. 

However, magnesium-based metal materials are currently 
limited by insufficient support capacity, and rapid degradation. 
These limitations have restricted the large-scale application 
of magnesium-based metal materials in clinical practice.86 
Therefore, the addition of metal elements of different 
compositions to magnesium alloys has achieved the purpose of 
increasing the mechanical properties of magnesium alloys and 
alleviating their excessive degradation. Table 1 summarises 
the role of magnesium alloys with different compositional 
elements in bone repair experiments.75,87-90 In addition, the 
addition of coatings can reduce the corrosion rate and control 
the degradation rate of magnesium alloys without altering the 
structure and composition of the magnesium alloys themselves, 
as well as alter the mechanical properties of magnesium-based 
implants, impart antimicrobial properties, and contribute 
to bone activity. Table 2 summarises the advantages and 
disadvantages of different coatings for magnesium-based alloy 
scaffolds.91-95 

4. Limitations

It must be acknowledged that this paper is not without 
shortcomings. Firstly, this paper provides a summary of 
the magnesium-containing biomaterials developed in our 
laboratory, but it does not aim to be a comprehensive review 
of all magnesium-containing biomaterials in the field. 
Secondly, with regard to the delivery system, this paper does 
not attempt a more detailed elaboration and comparison of 
the various types of magnesium-containing delivery systems, 
nor does it address the differences between them. The rate of 
magnesium ion loading and the rate of release; in the section 
on hydrogels, insufficient attention was paid to the impact of 
magnesium ions on the performance of hydrogel gel-forming; 
in the section on magnesium-based bioalloys, there was no 
comprehensive summary of the preparation technology and 
methods. In subsequent work, we will devote greater attention 
to these areas, with a particular focus on the preparation of 
magnesium-based bioalloys.

5. Summary and outlook 

Magnesium ions play a crucial role in maintaining bone 
health and promoting bone regeneration and repair. They can 
enhance the proliferation and differentiation of osteoblasts and 
BMSCs, as well as the formation of new blood vessels. There is 
a small content of cells in bone tissues, which is dominated by 
the extracellular matrix, and blood circulation is slightly weaker 
than that of internal organs. Therefore, magnesium ions may 
exert more pronounced effects persistently by loading them 
into drug delivery systems and hydrogels. Besides, they can 
be directly applied to the bone with a certain bone-targeting 
ability. Magnesium-based bioalloy scaffolds are highly 
biocompatible and degradable with excellent bone-enhancing 
properties. This has made magnesium ions and magnesium-
based bioalloy scaffolds a popular area of research in the field of 
bone regeneration and repair. Magnesium-based biomaterials 
carrying seed cells or bioactive substances have expanded the 
potential application range of magnesium-based biomaterials. 
This will improve the effectiveness of magnesium-based 
biomaterials in bone regeneration and repair. 
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However, magnesium-based bioalloy scaffolds have limitations, 
such as excessive degradation rate, low mechanical strength, 
and excessive hydrogen (H2) content of degradation products. 
To overcome these limitations, other elements can be added 
to magnesium-based bioalloy scaffolds or coatings can be 
applied, the objective is to enhance the mechanical properties 
of magnesium alloys and to mitigate their accelerated 
deterioration, which may be highlighted in future research. 
Furthermore, the application of magnesium-based bioalloy 
scaffolds in clinical scenarios is primarily limited to screws. 
There are fewer instances of their application in endosseous 
implants, such as intramedullary nails. However, these areas 
are expected to be a focus of future research, particularly in 
addressing the aforementioned limitations of magnesium alloy 

scaffolds. Moreover, it is necessary to further fabricate various 
types of magnesium-based bioalloy scaffolds, thus advancing the 
translational application of such materials in clinical scenarios. 
Finally, the manufacturing process of magnesium alloy is 
greatly enhanced by the use of additive manufacturing and 
three-dimensional printing technologies. These technologies 
offer significant advantages in terms of material properties and 
performance, design and manufacturing freedom, production 
efficiency and cost, as well as technological diversity and 
innovativeness. This will further enhance the potential of 
magnesium alloy in the clinical treatment of various diseases.
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Table 1.  Different types of magnesium-based bioalloy scaffolds in bone repair experiments

Coating Methods Component Advantage Disadvantage Reference

Layered double 
hydroxide 
coating

Co-precipitation, 
hydrothermal, 
ion exchange, 
electrodeposition, etc.

Layered double hydroxide 
consists of a positively 
charged hydroxide layer 
and a negatively charged 
intercalation layer with 
the molecular formula 
[M2 + 1– xM3 + x(OH)2]
[An-]X/N-zH2O

Corrosion resistance and 
biocompatibility.
Layered double hydroxide coatings can 
be intercalated with different anions 
to achieve specific functions such as 
photothermal/chemodynamic effects
Layered double hydroxide coating 
facilitates osteogenic differentiation, 
angiogenesis and induces macrophage 
M2 polarisation.

Coating preparation costs:
The preparation process for 
layered double hydroxide 
coatings can be relatively 
complex, requiring specific 
equipment and materials 
and high preparation costs.

75, 87, 88

Bioactive 
coatings

Chemical conversion 
coatings, bionic 
coatings, micro-arc 
oxidation, etc.

Hydroxyapatite, CaP 
and fluoride, tricalcium 
phosphate and glass 
ceramics

Good biocompatibility, avoids stress 
masking effect, promotes fracture 
healing, avoids secondary surgery, 
resourceful and inexpensive

Too rapid degradation, 
hydrogen generation, 
elevated pH and technical 
difficulties in coating 
preparation.

89

Biodegradable 
polymer 
coatings

Spinning, 
electrochemical, 
immersion, dipping, 
etc.

Chitosan, collagen, and 
synthetic macromolecules 
such as polycaprolactone, 
polylactic acid

Good biocompatibility, controlled drug 
release, improved corrosion resistance 
of magnesium alloys, good mechanical 
properties

Degradation rate needs to be 
precisely controlled, stability 
of drug release, adhesion 
of coating to substrate, 
in vivo reaction, complex 
preparation process

90

Table 2.  Composition and application of magnesium alloy bone implant materials

Mg alloy Treatment Composition Animal model Reference

ZK60 Sr-D-Ca-P/PLLA-Hap coating Zn: 5.5%
Zr: 0.49% 
Mg balance

Rat 91

ZK30 Hydrofluoric acid treatment Mg: residual
Zn: 3 wt. %
Zr: 0.3 wt. %

Mouse (femur fracture) 92

WE43 High temperature oxidation Y: 3.87wt. %
Nd: 2.24wt. % 
Gd: 1.16 wt. % 
Zr: 0.39 wt. % 
Residual Mg

Rabbit (femoral condylar 
fracture with bone defect)

93

AZ31B Si-containing Al: 3 wt. %
Zn: 1.1 wt. %
Mn: 0.70 wt. % 
Si: 0.01 wt. % 
Fe: 0.002 wt. % 
Cu: 0.008 wt. % 
Ni: 0.0008 wt. % 
Mg balance

Rabbit (bone defect) 94

JDBM DCPD coating Mg-Nd-Zn-Zr Goat femoral condyle fracture 95

Note: Al: aluminium; Ca: calcium; Cu: cuprum; DCPD: JDBM coated with brushite; Fe: ferrum; Gd: gadolinium; Mg: magnesium; Mn: manganese; Nd: neodymium; Ni: nickel; P: 
platinum; PLLA: poly (L-lactic acid); Si: silicate; Sr-D-Ca-P/PLLA-Hap (Sr dopped Ca-P coating/poly-L-lactic acid-hydroxyapatite); Y: yttrium; Zn: zinc; Zr: zirconium.
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