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1. Introduction

Macrophages are immune effector cells derived 
from monocytes and play important roles 
in a variety of physiological processes. They 
can participate throughout the tissue repair 
process due to their ability to polarize into 
either classically activated macrophages (M1) 
or alternatively activated macrophages (M2) 
under different inducing conditions.1 In the 
early stages of injury, macrophages stimulated 
by the inflammatory environment polarize into 
the M1 phenotype and secrete proinflammatory 
cytokines, such as tumor necrosis factor-alpha 
(TNF-α), interleukin (IL)-6, IL-12, and IL-1β, 
which exacerbate the inflammatory response and 
participate in the host defense against pathogen 

infection. Later in this microenvironment, 
macrophages tend to transform into M2 
phenotype under the influence of activated 
Type II cytokines, including IL-4 and IL-13. By 
secreting anti-inflammatory cytokines, such as 
IL-4, IL-10, vascular endothelial growth factor, 
and transforming growth factor-beta (TGF-β), 
M2 polarization modulates the inflammatory 
environment, promoting the angiogenesis and 
formation of collagen.2,3

Design strategies for hydrogel scaffolds aimed 
at promoting M2 polarization are becoming 
popular in tissue engineering for treating 
diseases across different systems. At present, the 
most frequent strategy is loading IL inducers 
or immunologically active molecules into 
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hydrogel scaffolds to regulate M2 polarization.4,5 However, 
challenges such as poor controlled release ability, difficulties 
in determining optimal dose and frequency, and potential drug 
resistance limit its application. Therefore, it is necessary to 
explore new strategies to enhance M2 polarization efficiency 
in hydrogel scaffolds.4,6

At present, it has been reported that certain physicochemical 
properties of hydrogel scaffolds are capable of guiding M2 
polarization.7,8 Among them, the storage modulus (G’) and loss 
modulus (G’’), which can activate the reactive oxygen species-
mediated nuclear factor kappa B (NF-κB) signaling pathway, 
have been shown to positively influence M2 polarization 
with increasing values of G’ and G’’.9,10 The pore size (PS) 
and porosity (P), which are associated with the transcription 
factors peroxisome proliferator-activated receptor gamma, 
signal transducer and activator of transcription 6 (STAT6), 
NF-κB, and STAT1, have been reported to promote M2 
polarization.11,12 The swelling ratio (SR), a reflection of 
hydrophilicity, has been proven to induce M2 polarization 
through the phosphoinositide 3-kinase and NF-κB 
pathways.13,14 The roughness (R), an index measuring the 
surficial topology of hydrogel scaffolds, is believed to stimulate 
M2 polarization through the Wnt pathway.15 The regulatory 
effects of these properties demonstrate that M2 polarization 
can be regulated by the physicochemical properties of hydrogel 
scaffolds. However, current studies predominantly focus on the 
effect of individual properties on M2 polarization. In contrast, 
multiple physicochemical properties inherently coexist and 
interact within hydrogel scaffolds. Their synergistic effects 
could significantly facilitate M2 polarization. To date, few 
studies have investigated the synergistic effects of multiple 
physicochemical properties. Theoretically, conducting a large 
number of one-factor orthogonal experiments could optimize 
the synergistic effects of multiple physicochemical properties 
to promote M2 polarization. However, the one-factor 
orthogonal method is time-consuming and inefficient, making 
it impractical in real-world applications.16

In recent years, with the deep integration of information 
technology and biomedicine, some biomedical issues are 
expected to be efficiently addressed using information 
technology.17 Interpretable machine learning (IML) is an 
information technology modeling method that can explain 
quantitative relationships between different factors based 
on existing data, showing significant advances in accuracy 
and efficiency. Using IML, predictions can be directly made 
by inputting specific feature data.18 In medical research, IML 
has been widely applied to regulate biological processes.19 
For example, IML has shed light on how various risk factors 
impact the occurrence and progression of different types of 
tumors, thereby providing some risk thresholds for tumor 
prevention.20,21 In addition, IML has been used to enhance cell 

behaviors when cultured with scaffolds constituted of multiple 
bioactive materials. By aiming at maximizing cell growth, 
viability, or antibacterial properties, the optimal material 
composition can be determined.22,23 As demonstrated, current 
medical applications highlight the potential of IML, which 
is highly promising for understanding how to enhance the 
synergistic effects of multiple physicochemical properties on 
M2 polarization in hydrogel scaffolds.

In this study, a novel strategy called IML-driven optimization 
of physicochemical properties (IML-OPP) is proposed for 
designing hydrogel scaffolds by enhancing the synergistic 
effects of physicochemical properties on M2 polarization. To 
develop the strategy, data on physicochemical properties and 
M2 polarization are collected from high-quality literature. 
After feature selection and data normalization, a dataset 
consisting of seven features and 60 samples is compiled. 
Based on this dataset, 21 different types of IML models are 
trained with hyperparameter optimization. Subsequently, 
eight metrics and confusion matrices are individually used to 
compare the performance of these models. The best IML model 
is then selected to interpret the importance ranking, as well 
as the independent and interactive effects of physicochemical 
properties on M2 polarization. Finally, three optimized 
combinations of physicochemical properties are generated 
to verify the robustness and universality of the IML-OPP 
strategy. A schematic illustration of how the IML-OPP strategy 
is constructed and applied in this work is shown in Figure 1. 
Overall, the IML-OPP strategy is expected to facilitate M2 
polarization through the regulation of the physicochemical 
properties of hydrogel scaffolds.

2. Methods

2.1. Dataset construction

2.1.1. Data mining

Literature was retrieved using “macrophage,” “hydrogel 
scaffold,” and “polarization” as keywords in the Scopus database 
(https://www.scopus.com/). The subject areas were limited to 
“Engineering, Multidisciplinary, Biochemistry, Genetics and 
Molecular Biology, Materials Science, Medicine, and Chemical 
Engineering,” and the document type was limited to “Article,” 
with the publication period limited to 2014 – 2024. To 
gather more high-quality literature, additional searches were 
conducted in the PubMed database (https://pubmed.ncbi.nlm.
nih.gov/?myncbishare=pubmedplus), CNKI database (https://
www.cnki.net), and Google Scholar database (https://scholar.
google.cz/schhp?hl=zh-CN) using the same retrieving strategy.

Among all the relevant literature, samples with the potential to 
be included in the IML dataset were selected according to the 
following criteria. To ensure diversity and representativeness 
in the dataset, it was necessary to maintain a relative balance 
of samples with different material compositions and synthesis 
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processes. For example, the methods most widely used for 
preparing hydrogels in recent years were prioritized by 
including a larger number of samples related to those scaffolds. 
Similarly, hydrogel scaffolds synthesized from widely used 
raw materials were considered during data augmentation. 
Regarding the scaffold form, it was necessary to ensure that all 
hydrogel scaffolds included in the dataset were traditional bulk 
scaffolds, excluding newer types such as hydrogel microspheres 
and microneedles. This approach aimed to reduce the potential 
impact of different scaffold forms on the effects exerted by 
various physicochemical properties, thereby controlling the 
confounding bias during model training.

From the perspective of cell culture, first, the selected samples 
must reflect the incubation processes of macrophages on the 
surface of hydrogel scaffolds with varying physicochemical 
properties. This excluded samples where macrophages were 
cultured in the extracts or base solutions of hydrogel scaffolds, 
especially those samples adopting the Transwell technique. This 
criterion was set to maximize the effects of physicochemical 
properties on M2 polarization through direct contact between 
macrophages and the hydrogel scaffolds. Moreover, it could 
harmonize cultivation methods across studies to eliminate the 
interference of differing practices on the results.

Second, to minimize the influence of non-physicochemical 
factors on M2 polarization and enhance the credibility of the 
dataset, the included hydrogel scaffolds should not contain 
active ingredients that promote M2 polarization, such as 
cytokines (e.g., TGF-β and IL-4) and metal ions (e.g., Mg2+ 
and Zn2+).

Third, to minimize between-group differences and enhance 
the homogeneity of outcome indicators, the cell line applied in 
the selected samples should be unified. The Raw264.7 cell line, 
a widely used model for in vitro culture of macrophages, was 
considered an ideal candidate.

Fourth, to balance the effects of different polarization 
conditions across studies and ensure comparability of outcome 
indicators, the experiments corresponding to the selected 
samples must include positive controls.

Finally, to confirm the metrizability of the outcome indicators, 
M2 polarization must be evaluated using at least one of the 
following techniques: western blotting (WB), flow cytometry 
(FC), enzyme-linked immunosorbent assay (ELISA), or 
quantitative polymerase chain reaction (qPCR).

2.1.2. Data preprocessing

In terms of feature selection, to ensure the representativeness 
of the properties during the incubation process with 
macrophages and considering their prevalence in the literature, 
four categories of hydrogel scaffold properties were initially 
extracted, including mechanical properties, hydrophilicity, 
pore properties, and surface morphology. These four 
categories encompassed multiple initial features reflecting 
different aspects of physicochemical properties. To reduce the 
overfitting risk caused by the imbalance between the number 
of samples and features, the maximal information coefficient 
(MIC) was used to measure the correlation between the 
extracted original features and the outcome indicators.24 After 
ranking the MICs of all initial features, a threshold was set, 

Figure 1. Schematic illustration of the construction and application of the IML-OPP strategy. Created with BioRender.com. Han, Z. (2025) 
https://BioRender.com/pwureur. Notes: *: Improve the synergistic effects of multiple physicochemical properties; △: Promote M2 polarization 
to the highest possible level using hydrogel scaffolds.
Abbreviations: Arg-1: Arginase-1; CCR7: C-C chemokine receptor type 7; CD86: Cluster of differentiation 86; CD163: Cluster of differentiation 
163; CD206: Cluster of differentiation 206; G’: Storage modulus; G’’: Loss modulus; IL-1β: Interleukin-1 beta; IL-4: Interleukin-4; 
IL-6: Interleukin-6; IL-10: Interleukin-10; iNOS: Inducible nitric oxide synthase; P: Porosity; PS: Pore size; R: Roughness; SR: Swelling ratio; 
TGF-β: Transforming growth factor beta; TNF-α: Tumor necrosis factor alpha; IML-OPP: Interpretable machine learning-driven optimization 
of physicochemical properties.
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rejecting any features with an MIC lower than 0.1. Eventually, 
six physicochemical properties were selected as the included 
features: G’, G’’, SR, R, P, and PS.

To ensure consistent measuring standards for these properties 
across all samples, G’ and G’’ were collected uniformly at a strain 
of 0.5 – 1% and a frequency of 1 Hz. For SR, the time point at 
which a submerged hydrogel scaffold reached an equilibrium 
swelling state in 1×phosphate-buffered saline (pH 7.4) at 
room temperature was selected as the endpoint. The SR was 
calculated by determining the difference between the wet 
weight at the endpoint and the dry weight before submerging 
the hydrogel scaffold and then dividing this difference by the 
dry weight. For R, P, and PS, they were acquired by analyzing 
data from a scanning electron microscope (SEM) using ImageJ 
software. Specifically, PS represented the average projected 
area of multiple pores on the surface of the hydrogel scaffolds, 
while P indicated the average proportion of the porous area 
on the surfaces of hydrogel scaffolds. Notably, R was defined 
in a novel way as the coefficient of variation calculated from 
the gray distribution of a representative area on the hydrogel 
scaffold surface in the SEM field. This approach was proposed 
due to the limited studies that precisely quantified the R of 
hydrogel scaffolds.

To comprehensively evaluate the degree of M2 polarization, 
a classification index was constructed by combining changes 
in surface antigens, specific intracellular proteins, and 
secreted cytokines throughout the M2 polarization process. 
Specifically, the polarization-related metrics for each sample in 
the dataset were classified into two types after extraction. The 
first type was related to proinflammatory indicators, including 
C-C chemokine receptor type 7, cluster of differentiation 86 
(CD86), inducible nitric oxide synthase, TNF-α, IL-1β, and 
IL-6. An increase in the levels of these indicators indicated 
a reduction in M2 polarization. The second type was related 
to anti-inflammatory indicators, including CD206, CD163, 
arginase-1, TGF-β, IL-4, and IL-10. An increase in their 
expression levels indicated an increase in M2 polarization. 
Scores were then assigned based on the M2 polarization 
evaluation techniques used in each study, with different 
criteria applied accordingly.

Briefly, when the study of a sample evaluated polarization-
related metrics using WB, ELISA, or qPCR, scores were 
assigned based on the ratio of the experimental group’s 
value to the positive control group’s value. If this ratio was 
between 0.8 and 1.25, a contribution of 0 was given. If the 
ratio was between 0.5 and 0.8, a score of +1 was given for 
proinflammatory-related indicators, and a score of −1 was 
assigned for anti-inflammatory-related indicators. If the ratio 
was between 1.25 and 2, a penalty of −1 was imposed for 
proinflammatory-related indicators, and a score of +1 was 
given for anti-inflammatory-related indicators. If the ratio was 
lower than 0.5, a score of +2 was given for proinflammatory-
related indicators, and a score of −2 was assigned for anti-
inflammatory-related indicators. If the ratio was higher than 2, 
a penalty score of −2 was given for pro-inflammatory-related 
indicators, and a score of +2 was given for anti-inflammatory-
related indicators.

Similarly, when the study of a sample used FC to evaluate 
polarization-related metrics, a contribution of 0 was given if 
the difference between the experimental group’s value and the 
positive control group’s value was between −5% and +5%. If 
the difference was between −10% and −5%, a score of +1 was 
given for proinflammatory indicators, and a score of −1 was 
given for anti-inflammatory indicators. If the difference was 
below −10%, a score of +2 was assigned for proinflammatory 
indicators, and a score of −2 was given for anti-inflammatory 
indicators. If the difference was above +10%, a score of −2 was 
given for proinflammatory indicators, and a score of +2 was 
assigned for anti-inflammatory indicators.

Finally, the cumulative score of each sample across all indicators 
was calculated and then divided by the number of evaluation 
indicators corresponding to that sample to obtain the average 
value. If the average value was positive, it was rounded to 
the nearest whole number according to standard rounding 
principles. Otherwise, all values were set to 0. Eventually, 
a target system measuring the degree of M2 polarization on 
a scale of 0, 1, or 2 was established. In this system, samples 
with a target value of 0 indicated that macrophages were 
either not significantly polarized to M2 or even polarized 
toward M1 under the given combinations of physicochemical 
properties. Likewise, samples with a target 1 indicated slight 
M2 polarization in macrophages cultured on these hydrogel 
scaffolds. Samples with a target value of 2 indicated significant 
M2 polarization of macrophages.

After data reduction and normalization, a dataset with seven 
features and 60 samples was compiled for IML (Table S1). 
Each column, except for the last, represented a specific feature, 
with all values in each column having the same unit. The last 
column of the dataset represented the outcome target, which 
indicated the synergistic effects of hydrogel scaffolds on M2 
polarization under specific combinations of physicochemical 
properties. Notably, data augmentation was performed to 
include additional samples. This technique helped to prevent 
underfitting or overfitting, which could occur with a small 
training set and unbalanced classes.

2.2. IML model training and evaluation

2.2.1. Hyperparameter optimization

A total of 21 IML models were included in this study for 
performing a multi-classification task. These models are 
widely recognized ML models in the biomedical field for their 
reliability in terms of model complexity, popularity, scalability, 
and interpretability.23,25,26

 The most appropriate model was 
identified through an exhaustive comparison utilizing various 
evaluation metrics. Specifically, to reduce the risk of overfitting 
while enhancing the robustness of each model, a five-fold 
cross-validation approach was employed, where the dataset 
was randomly divided into training and testing subsets with 
an 80:20 ratio. For hyperparameter optimization to determine 
the optimal combinations, grid search, a reliable method, 
was employed to systematically screen the representative 
hyperparameters, tailored to each model’s unique 
characteristics.23 Table 1 provides a concise summary of the 
definitions and characteristics of each IML model presented in 
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this study, along with the optimized hyperparameters based on 
packages such as scikit-learn and PyTorch.

2.2.2. Optimal model selection

In accordance with the methodology proposed by Rafieyan 
et al.,23 the current study selected seven metrics to assess the 
predictive capabilities of the models from various perspectives. 
These metrics included accuracy, precision, recall, F1 Score, 
Cohen’s kappa coefficient (CKC), Matthews correlation 
coefficient (MCC), and the area under the receiver operating 
characteristic curve (ROC_AUC).27

Accuracy is the proportion of correctly predicted samples to 
the total number of predictions in classification models. As a 
comprehensive metric, accuracy is the most prevalently used 
in IML studies. However, it is susceptible to invalidation in the 
event of sample imbalance. Precision refers to the frequency 
with which the model correctly predicts the positive class, 
while recall refers to the proportion of correctly identified 
positive class labels out of all possible positive class labels. As 
two metrics evaluating the reliability of positive predictions 
from distinct viewpoints, precision, and recall often cannot 
attain their maximum values concurrently. The F1 Score, being 
the harmonic mean of these two, provides a stable assessment 
while maintaining a balance between them. CKC is commonly 
employed to quantify the degree of consistency between 
two evaluation systems. It ranges from −1 to 1, with the 
significant advantage of rectifying accidental consistency in the 
classification process. MCC, another integrated classification 
metric ranging from −1 to 1, balances the influence of true 
positives, true negatives, false positives, and false negatives. 
It is particularly suitable for situations with small sample 
sizes and unbalanced classes. The ROC_AUC represents a 
comprehensive evaluation of the prediction effect across 
all possible classification thresholds. ROC_AUC quantifies 
the ability to more confidently identify a randomly chosen 
positive sample as truly positive, compared to the probability 
of misclassifying a negative sample as positive. This metric is 
often regarded as the most credible evaluation criterion.

Based on the computation of the seven metrics for each model, 
a comprehensive score was obtained by summing them. By 
comparing these scores across the 21 IML models, the optimal 
IML model for predicting cell behavior on hydrogel scaffolds 
was identified. In addition, the prediction performance of this 
optimal model across all classes was visually presented using a 
confusion matrix.

2.3. Importance ranking analysis

Most IML models, which primarily focus on training and 
prediction, are considered “black-box models” and have limited 
interpretability. Therefore, it is necessary to deconstruct 
these models after their establishment to understand how 
variations in each feature contribute to the changes in targets. 
The Shapley additive explanations (SHAP) algorithm offers 
a comprehensive approach to IML model interpretation. 
Its fundamental principle involves constructing an additive 
explanatory model by calculating the marginal contribution 
of each feature to the predicted targets after model prediction. 

This allows for an in-depth understanding of the direction 
and magnitude of each feature’s influence at both global and 
individual levels.28

For different IML models, the SHAP algorithm can be matched 
with various explanatory tools, such as gradient, linear, tree, and 
kernel explainers, to provide accurate interpretations of specific 
IML models. After determining explainers, the importance 
ranking of all features can be computed and visualized at both 
individual and global levels. Ideally, these rankings should be 
consistent across both levels, reflecting the robustness of the 
analyzed IML model. However, in practice, importance rankings 
often vary between individual samples and the global-level 
interpretation is considered more reliable in these cases. In the 
current study, the importance ranking of six physicochemical 
properties in promoting M2 polarization was determined using 
the optimal IML model. This ranking guided the optimized 
order of physicochemical properties in the IML-OPP strategy.

2.4. Independent effect analysis

The independent effects of each physicochemical property were 
analyzed using scatter plots, depicting how the SHAP values 
varied with changes in property values for each sample in the 
testing set. The tendency of increment or decrement of data 
points across different property values reflected the direction 
of independent effects, both at the local and global levels. 
These trends served as important elements for optimizing 
physicochemical properties in the IML-OPP strategy.

2.5. Interactive effect analysis

The interactive effects of each physicochemical property with 
other properties were analyzed using dependence plots, which 
illustrated how the SHAP value of a given property varied 
when that property was held constant while others changed. 
The trends – whether increasing or decreasing – of data points 
under relatively fixed property values reflected the directions 
of interactive effects across different value ranges. These 
trends were considered another critical factor for optimizing 
physicochemical properties in the IML-OPP strategy.

2.6. Analysis tools

This study used the AutoDL platform (SeetaCloud Nanjing 
Technology, China), Python software (version 3.12, Python 
Software Foundation, USA), ImageJ 1.54d software (National 
Institutes of Health, USA), GraphPad Prism 8 software 
(GraphPad Software, USA), Biorender APP (Biorender, 
Canada), and WPS software (version 12.1.0.16729, Kingsoft 
Office Software, China) for data summarization and analysis. 
The primary Python packages used included NumPy 1.26.3, 
Matplotlib 3.6.3, scikit-learn 1.4.1.post1, pandas 2.2.0, PyTorch 
2.2.0, and shap 0.42.0.

3. Results

3.1. Dataset description

To ensure the applicability of IML models from the perspective 
of included data and to gain an initial understanding of the 
significance of each physicochemical property in hydrogel 
scaffolds, it is crucial to provide an overview of the prevalent 
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ranges of these properties. Therefore, before the training and 
predicting processes of IML models, a descriptive statistical 
analysis was conducted on the preprocessed dataset. This 
dataset comprised six physicochemical features – G’, G’’, SR, R, 
P, and PS. An additional feature, incubation time (IT), reflecting 
cell co-culture duration, was also included. The target variable 
included three classes, labeled 0, 1, and 2, representing the 
degree of M2 polarization in ascending order. The arrangement 
of multiple features and classified targets facilitated IML model 
training on the dataset in universal prediction and evaluation, 
thereby demonstrating the robustness of the dataset.

Figure 2A-F demonstrates the distribution of kernel density 
estimation of the six physicochemical properties included in 

the dataset, both across full target classes and target 2 samples, 
which exhibited the highest degree of M2 polarization. These 
distributions, to some extent, reflect the value ranges of each 
physicochemical property to stimulate macrophage polarization.

For G’ (Figure 2A), the maximum probability density was 
observed around 1,000 Pa in both the full target and target 
2 classes, indicating that hydrogel scaffolds prepared for 
macrophage polarization tended to exhibit low energy G’. 
In addition, no target 2 samples had G’ exceeding 7,000 Pa, 
suggesting that an excessively high G’ may be unfavorable for 
promoting M2 polarization.

For G’’ (Figure 2B), the maximum probability density was 
observed around 200 Pa in both the full target and target 

Figure 2. Descriptive statistical analysis for the dataset used in this study. (A-F) Kernel density estimation distribution of storage modulus 
(G’), loss modulus (G’’), swelling ratio (SR), porosity (P), pore size (PS), and roughness (R) on full target and target 2 classes. (G) Frequency 
distribution of feature incubation time. (H) Balanced distribution of target across three classes.
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2 classes, indicating that hydrogel scaffolds prepared for 
macrophage polarization tended to exhibit low energy 
G’’. Besides, no target 2 samples had G’’ exceeding 850 Pa, 
suggesting that an excessively high G’’ may also be unfavorable 
for promoting M2 polarization.

For SR (Figure 2C), the maximum probability density was 
observed to be around 300% in both the full target and target 
2 classes, indicating that most hydrogel scaffolds prepared for 
macrophage polarization had low SR. Additionally, no target 
2 samples had SR exceeding 1100% or below 90%, suggesting 
that excessively high or low SR may hinder M2 polarization.

For P (Figure 2D), the maximum probability density was 
observed to be around 80% in both the full target and target 
2 classes, indicating that hydrogel scaffolds prepared for 
macrophage polarization tended to have high P. Moreover, 
no target 2 samples had P below 30%, suggesting that an 
excessively small P could negatively affect M2 polarization.

For PS (Figure 2E), the maximum probability density was 
observed around 1,200 μm2 in both the full and target 2 
classes, indicating that most hydrogel scaffolds prepared for 
macrophage polarization had small PS. Furthermore, the PS 
distribution range of target 2 samples in the dataset aligned 
with that of all type samples, indicating that PS may have a 
weak impact on M2 polarization.

For R (Figure 2F), the maximum probability density was 
observed around 0.4 – 0.5 for both the full target and target 
2 classes, indicating that hydrogel scaffolds prepared for 
macrophage polarization tended to have moderate R. 
Moreover, no target 2 samples in the dataset had R below 0.2, 
suggesting that excessively small R may hinder M2 polarization.

The IT feature and the distribution of the target also highlighted 
trends observed in current research. Figure 2G illustrates the 
IT of macrophages cultured with hydrogel scaffolds in the 
studies corresponding to each sample in the dataset. It is evident 
that, apart from the 0 h time point, which holds little relevance 
for discussion, the 24 h time point was most commonly used as 
the evaluation node for M2 polarization levels. The maximum 
value of IT in all included samples was 168 h, indicating that 
the M2 polarization effect of hydrogel scaffolds likely required 
a longer duration to manifest. Figure 2H shows the proportion 
of targets 0, 1, and 2 within the dataset, indicating a balanced 
distribution of target classes. This balance helps mitigate the 
risk of bias in the target distribution.

3.2. IML model training and evaluation

3.2.1. Hyperparameter optimization

Hyperparameter optimization is an inevitable step in optimal 
model selection, as it maximizes the performance of each of 
the 21 IML models on the dataset. By repeatedly training and 
predicting with different hyperparameter combinations, the 
optimal combination for each IML model can be identified. 
Table 2 presents the outcomes of hyperparameter optimization 
for the 21 IML models.

Among tree-structured models, including the extreme gradient 
boosting (XGBoost), categorical boosting (CatBoost), light 
gradient boosting machine (LGBM) Classifier, decision tree 

(DT), random forest (RF), extremely randomized trees, and 
regularized greedy forest (RGF) Classifier, the hyperparameter 
“n_estimators” or “iterations,” which represents the number 
of sub-trees, had a significant impact on model performance. 
Increasing this value enhanced model complexity and improved 
prediction robustness, but it also raised the risk of overfitting. 
Meanwhile, the hyperparameter “depth” or “max_depth,” which 
represents the tree depth, restricted the maximum number 
of layers during model training. Excessively increasing this 
value may lead to models capturing extra noise in the training 
set, increasing the risk of overfitting. The hyperparameter 
“learning_rate” generally showed an inverse correlation with 
the aforementioned two types of hyperparameters. A lower 
learning rate was associated with a more robust model. In 
addition, the parameters “min_samples_leaf” and “min_samples_
split” were used to restrict the branching in tree structures. 
Higher values of these hyperparameters indicated lower model 
complexity, which may increase the resistance to model training. 
For the dataset in this study, most tree-structured models 
optimized their hyperparameters with moderate values of “n_
estimators”/”iterations,” “depth”/”max_depth,” and “learning_
rate,” while using relatively low values for “min_samples_leaf” 
and “min_samples_split.” This setup reflects a balance between 
increasing model complexity and reducing the risk of overfitting, 
especially when processing datasets with a small sample size. 
In particular, to enhance the model’s generalization ability 
and to accelerate model training, the LGBM Classifier set the 
hyperparameters “colsample_bytree” and “subsample” to values 
<1, while the RGF Classifier set the hyperparameter “algorithm” 
to “RGF’“ to enhance prediction robustness through a single-leaf 
model with RGF and L2 regularization.

For neural network (NN)-related models, the NN model 
represents a classical NN that is learned based on the PyTorch 
frame. The MLP Classifier, on the other hand, is a relatively 
simplified version of a fully connected feed-forward NN 
compared to the NN model. In the current study, both models 
were trained with the Rectified Linear Unit activation function 
and Adam adaptive algorithm. However, there was a key 
difference in the structure of the hidden layers: the NN model 
was optimized with 64 hidden layers, while the MLP Classifier 
had only 2 layers. Given the characteristics of the dataset 
applied in this study, it can be speculated that the NN model 
may be too complex to perform effectively in prediction.

In the case of the three basic linear models – Logistic 
Regression, Ridge Classifier, and Passive Aggressive Classifier 
– as well as the two support vector machine (SVM) classifiers, 
the SVM and Linear SVC models, regularization plays a crucial 
role in reducing the risk of overfitting and enhancing the 
models’ generalization ability. In this study, the regularization 
hyperparameter “C” for the Logistic Regression and SVM 
models, as well as the regularization hyperparameter “alpha” for 
the Ridge Classifier, were adjusted to impose a larger penalty 
term. This adjustment aimed to reduce the risk of overfitting 
and enhance model robustness.

For the k-nearest neighbor (KNN) model, the samples in the 
dataset were grouped into distinct clusters, and the “weights” 
parameter was set to “uniform.” This configuration ensured 
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that all nearest-neighbor samples had equal weights, thereby 
fully utilizing the information from each sample.

For the discriminant analysis models, the model optimization 
process involved the calculation of feature covariance matrices. 
The hyperparameter “reg_param” in the quadratic discriminant 
analysis (QDA) model and the “shrinkage” parameter in the 
Linear Discriminant Analysis model were used to regularize the 
covariance matrices, thereby enhancing model performance.

For models based on the Naive Bayes (NB) assumption, 
hyperparameter optimization for Gaussian NB was 
straightforward. The hyperparameter “var_smoothing” was set to 
its default value in the Gaussian NB model to meet the requirement 
of computational stability. However, for the Bernoulli NB model, 
additional factors needed to be considered, such as the smoothing 
factor “alpha,” the binarization feature threshold “binarize,” and 
“fit_prior” hyperparameters which determine whether to learn 
the class prior probabilities. These factors could influence the 
model’s fitting degree during model training.

During the optimization process of the Gaussian process 
classifier (GPC) and label propagation models, selecting the 
hyperparameter “kernel” was crucial. The GPC model was 
endowed with the general RBF kernel. It could handle samples 
where the features are non-linearly related to the class targets 
and reduce the risk of numerical difficulties. Unlike the GPC 
model, the Label Propagation model performed better with the 
KNN kernel, likely due to the balanced structure of the dataset.

Overall, the optimized hyperparameters for the 21 IML models 
were presented, facilitating further evaluation and comparison 
of the performances of IML models.

3.2.2. Optimal IML model selection

After hyperparameter optimization, the 21 IML models were 
expected to demonstrate excellent performances. However, 
the key objective was to identify the model with the best 
predictive ability in establishing the relationship between 
the physicochemical properties of hydrogel scaffolds and M2 
polarization levels. For this purpose, seven evaluation metrics 
were used to evaluate the prediction performance of the 21 
IML models from different perspectives (Figure 3A-H).

Overall, among the 21 IML models, the maximum value for 
accuracy and recall was 0.8333, while the minimum value was 
0.2500, and the median was 0.6667. Similarly, for precision, 
F1 Score, ROC_AUC, CKC, and MCC, the maximum values 
were 0.8889, 0.8296, 0.9881, 0.7500, and 0.7828, respectively, 
while the minimum values were 0.1736, 0.2451, 0.5381, 
−0.1739, and −0.1822, respectively. The medians for metrics 
distribution were 0.7183, 0.6508, 0.8232, 0.4839, and 0.4892, 
respectively. These results indicate that, although there were 
significant performance differences among the 21 IML models, 
most models exhibited some level of predictive value for the 
polarization behavior of macrophages cultured on hydrogel 
scaffolds. This suggests that the dataset is reliable.

Focusing on the optimal models across each metric, six models 
consistently demonstrated outstanding performance in all 
metrics: RF, DT, Catboost, QDA, XGBoost, and MLP Classifier. 
Moreover, when the sum of the seven evaluation metrics was 

used to evaluate the performance of each model, these six 
models emerged as the top performers (Figure 3H). Since the 
goal of applying ML models was to explore the combination 
of physicochemical properties of hydrogel scaffolds that most 
effectively promote M2 polarization, it was necessary to 
compare the predictive abilities of different models for various 
target classes to identify the model most accurate in predicting 
target 2 samples. Among these six top-performing IML models, 
confusion matrices were used to illustrate the combinations of 
actual and predicted target classes for each model (Figure 4). It 
was obvious that when RF, DT, Catboost, and MLP Classifier 
models were used to predict the test set, the probability of 
accurate prediction for samples with actual target 1 or 2 reached 
100%, and when predicting target 2 samples, the models perfectly 
matched the actual target (Figure 4A, and C-E). In contrast, 
the QDA model was only able to achieve 66.7% accuracy for 
predicting actual target 2 samples, while the XGBoost model 
showed a relatively high misjudgment rate for predicting target 
2 samples (Figure 4B and F).

Summarizing the evaluations above, the RF model not only excelled 
in five metrics – accuracy, precision, recall, CKC, and MCC – but 
also achieved the highest overall evaluation when considering the 
sum of all metrics. More importantly, the confusion matrix for 
the RF model demonstrated the most accurate predictions for 
samples with target 2, highlighting its potential for promoting 
M2 polarization. Therefore, the RF model was selected as the best 
IML model. Detailed parameters are available in the model file 
“HydrogelScaffoldProperties_MacrophagePolarization_RF.pkl” 
in the Supplementary Materials.

3.3. Importance ranking analysis of the six 

physicochemical properties

Through hyperparameter optimization and multi-angle 
performance evaluation, the optimal RF model was 
established. However, as a black box model, without further 
processing, it could only be used to predict the degree of M2 
polarization promotion induced by hydrogel scaffolds with 
specific combinations of physicochemical properties. This 
limitation made it challenging to directly understand how 
these physicochemical properties synergistically influenced 
M2 polarization. Therefore, it was necessary to conduct an 
interpretability analysis of the selected optimal IML model.

The SHAP algorithm, an additive explanation method for ML 
model interpretability analysis in recent years, was introduced in 
this study to analyze the optimal RF model. Given that the optimal 
RF model is characterized by a tree structure, the tree explainer 
was selected as the core of the SHAP algorithm for analysis.

To determine the importance ranking of different 
physicochemical properties in hydrogel scaffolds influencing 
M2 polarization, the effects of each physicochemical property 
at the individual sample level were first explored. As shown in 
Figure 5A-C, the first three samples in the test set exhibited 
completely different impact directions and levels among the 
seven features, indicating that the importance ranking of 
physicochemical properties reflected by each sample may not 
be unified. Therefore, we switched to exploring the importance 
of ranking at the global level. As presented in Figure 5D, the 



Biomater Transl. 2025 9

 Han, Z., et al.Original Research

importance ranking of the six physicochemical properties for 
M2 polarization, in descending order, was P, G’’, SR, G’, R, 
and PS. Building on this basis, Figure 5E depicts the impact 
directions of each feature, including that of IT. The results 
showed that the most important property for M2 polarization 
at the global level was P. Within the range of 3.764 – 91.824% 
corresponding to the training set, increasing P will most 
likely promote M2 polarization. Interestingly, though R and 
PS ranked lowest in importance, they also showed a positive 
correlation with M2 polarization at the global level. In 
contrast, G’’, G’, and SR were negatively correlated with M2 
polarization. In addition, the effect of IT on M2 polarization 

was consistent with the expectation, that is, within the range 
of 0 – 168h corresponding to the training set, suggesting that 
increasing the IT is conducive to M2 polarization. In summary, 
these results establish a priority sequence for optimizing 
physicochemical properties. For example, unless there are fixed 
demand for its value, P should be prioritized when optimizing 
a single physicochemical property to promote M2 polarization.

3.4. Independent effect analysis of the six 

physicochemical properties

To enhance the synergistic effects of multiple physicochemical 
properties, it is necessary to fully understand the independent 

Figure 3. Predictive performances comparison on (A) accuracy, (B) precision, (C) recall, (D) F1 Score, (E) ROC_AUC, (F) CKC, (G) MCC, and 
(H) the sum of the first seven metrics of 21 interpretable machine learning models. 
Abbreviations: Bernoulli NB: Bernoulli Naive Bayes; CatBoost: Categorical boosting; DT: Decision tree; Extra Trees: Extremely randomized 
trees; Gaussian NB: Gaussian Naive Bayes; GPC: Gaussian process classifier; KNN: K-nearest neighbors; LDA: Linear discriminant analysis; 
LGBM: Light gradient boosting machine; Linear SVC: Linear support vector classification; MLP: Multi-layer perceptron; NN: Neural network; 
PAC: Passive aggressive classifier; QDA: Quadratic discriminant analysis; RF: Random forest; RGF: Regularized greedy forest; SVM: Support 
vector machine; XGBoost: Extreme gradient boosting; ROC_AUC: Area under the receiver operating characteristic curve; CKC: Cohen’s kappa 
coefficient; MCC: Matthews correlation coefficient.
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effect of each property. To achieve this, scatter plots of the 
SHAP value distributions for each physicochemical property 
were generated based on the test set data (Figure 6).

Figure 6A shows that only when the P was between 3.764% 
and 48.063% did an increase in P markedly promote M2 
polarization. Conversely, when P varied between 48.063% and 

Figure 4. Confusion matrix of interpretable machine learning models of (A) RF, (B) QDA, (C) DT, (D) CatBoost, (E) MLP classifier, and 
(F) XGBoost. 
Abbreviations: RF: Random forest; QDA: Quadratic discriminant analysis; DT: Decision tree; CatBoost: Categorical boosting; MLP: Multi-layer 
perceptron; XGBoost: Extreme gradient boosting.

B C

D E F

A

Figure 5. Importance ranking analysis on the optimal random forest model. (A-C) Feature contribution to M2 polarization at individual level 
for the first three samples in the test set. (D) Importance ranking of feature contribution at the global level. (E) Impact directions and levels of 
each feature on M2 polarization. 
Abbreviation: SHAP: Shapley additive explanations.
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91.824%, its changes had minimal impact on M2 polarization. 
These results suggest that in designing hydrogel scaffolds 
aimed at promoting M2 polarization, it may not be necessary 
to pursue an excessively high P.

Figure 6B displays that when the G’’ was between 839.599 
Pa and 1,645.570 Pa, its decrease markedly promoted M2 
polarization. In contrast, when the G’’ varied between 8.653 Pa 
and 839.599 Pa, its decrease made a relatively low contribution 
to M2 polarization. These findings indicate that excessively 
low G” may offer limited benefits for hydrogel scaffold 
optimization.

Figure 6C demonstrates that when the SR was between 
377.815% and 1,804.511%, its decrease markedly promoted 
the polarization of M2. This result is consistent with the effect 
direction obtained in the section importance ranking analysis 
of the six physicochemical properties. However, a slight 
tendency to inhibit M2 polarization was observed as the SR 
decreased in the range of 8.372% – 377.815%. This suggests 

that a moderate SR is beneficial for enhancing the promoting 
effect of hydrogel scaffolds on M2 polarization.

Figure 6D reveals that when the G’ was between 104.026 Pa 
and 2,175.141 Pa, an increase in its value tended to promote 
M2 polarization. Notably, when the G’ was at 4620.253 Pa, the 
SHAP value dropped sharply. The SHAP value rebounded when 
the G’ was at 6910.891 Pa, reflecting the promotion effect of G’ 
on M2 polarization. These findings indicate that in designing 
hydrogel scaffolds aimed at promoting M2 polarization, the G’ 
value should be kept away from 4620.253 Pa.

Figure 6E displays that when the R was between 0.307 
and 0.654, a decrease in its value was apt to promote M2 
polarization. However, when the R value was too low, e.g., at 
0.143, an inhibitory effect on M2 polarization was seen. These 
results suggest that a moderate R is conducive to the promoting 
effect of hydrogel scaffolds on M2 polarization.

Figure 6F exhibits that when the PS was between 168.882 μm2 
and 27,850.340 μm2, an increase in its value was prone to 

Figure 6. Scatter plots for SHAP values of (A) porosity (P), (B) loss modulus (G’’), (C) SR, (D) storage modulus (G’), (E) roughness (R), and 
(F) PS, reflecting independent effects on M2 polarization of each physicochemical property.
Abbreviations: SHAP: Shapley Additive Explanations; SR: Swelling ratio; PS: Pore size.

B

C D

E F

A



12 www.biomat-trans.com

ML-guided hydrogel design for M2 polarization 
Biomaterials Translational

promote M2 polarization. Conversely, the smallest value of PS 
at 88.923 μm2 showed an inhibitory effect on M2 polarization. 
These results indicate that an excessively low PS should not 
be taken into account in designing hydrogel scaffolds aimed at 
promoting M2 polarization.

The above results provide the specific ranges for all six 
properties to enhance the promotion of M2 polarization, 
serving as a foundation for enhancing the synergistic effects of 
physicochemical properties in hydrogel scaffolds.

3.5. Interactive effect analysis of the six 

physicochemical properties

With the independent effects of physicochemical properties 
investigated, the key point to enhance the synergistic effects 
on M2 polarization is to determine the interactive effects 
among the properties. Hence, the dependence plots of each 
physicochemical property with other properties were depicted 
based on the test set data (Figures 7-12).

For interactive effect quantification, each property was regarded 
as an interaction term to mediate the relationship between 
other physicochemical properties and their effects on M2 
polarization. The interactive effects were reflected by changes 
in M2 polarization levels when the interaction term changed 

while keeping other properties constant. Specifically, the 
interactive effect was visualized using the dependence plot of 
SHAP values for the physicochemical properties. For example, 
as shown in Figure 7D, when the value of P was controlled 
around 80%, three corresponding points were displayed with 
different colors. According to the legend of the blue-red 
gradient, ums of these points were attributed to the change of 
interaction term, which in this case was G’. Consequently, by 
combining the SHAP value changes and the range of G’, the 
interactive effects of G’ and P on M2 polarization were obtained.

For the optimization of the interactive effects, the independent 
effect of each physicochemical property on M2 polarization 
levels and the interactive effects of other physicochemical 
properties were combined to identify the value ranges of each 
physicochemical property that maximized M2 polarization 
levels. Then, the optimized combinations of physicochemical 
properties were generated.

3.5.1. Interactive effect analysis of p with other properties

Figure 7 shows the interactions of P with five physicochemical 
properties: G’’, SR, G’, R, PS, and IT. Among these features, 
IT, SR, and R did not exhibit obvious interactions with P on 
the test set (Figure 7A, C, and E). Figure 7B demonstrates 

Figure 7. Dependence plots for SHAP values of porosity interacting with (A) incubation time, (B) loss modulus, (C) swelling ratio, (D) storage modulus, 
(E) roughness, and (F) pore size, reflecting potential interaction effects on M2 polarization of other physicochemical properties with porosity. 
Abbreviation: SHAP: Shapley additive explanations.
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that when P was between 48.063% and 65.538%, increasing 
G’’ within the range of 8.653 – 839.599 Pa enhanced the effect 
of P on M2 polarization. Figure 7D shows that when P was 
between 48.063% and 81.468%, increasing G’ within the range 
of 104.026 – 6,910.891 Pa enhanced the effect of P on M2 
polarization. Figure 7F exhibits that when P was between 
48.063% and 81.468%, decreasing PS within the range of 88.923 
– 24,668.131 μm2 promoted the effect of P on M2 polarization.

These results suggest that G’, G’’, and PS have interactive 
effects with P in influencing M2 polarization within specific 
value ranges. They also imply that to enhance the synergistic 
effects of physicochemical properties for promoting M2 
polarization, the following value ranges should be considered: 
P between 48.063% and 81.468%, G’’ approaching 839.599 
Pa, G’ approaching 6,910.891 Pa, and PS approaching 
88.923 μm2 while ensuring that the independent effects of each 
physicochemical property are not significantly weakened.

3.5.2. Interactive effect analysis of G’’ with other properties

Figure 8 displays the interactions of other features with G’’. 
Among these features, IT, P, SR, and G’ did not exhibit obvious 
interactions with G’’ on the test set (Figure 8A-D). Figure 8E 
demonstrates that when G’’ was between 8.653 Pa and 423.729 
Pa, decreasing R within the range of 0.307 – 0.654 enhanced 

the effect of G’’ on M2 polarization. Figure 8F shows that 
when G’’ was between 8.653 Pa and 323.986 Pa, decreasing 
PS within the range of 88.923 – 27,850.340 μm2 enhanced the 
effect of G’’ on M2 polarization.

These results indicate that R and PS have interactive effects 
with G’’ in influencing M2 polarization within specific value 
ranges. They also imply that to enhance the synergistic effects 
of physicochemical properties for promoting M2 polarization 
with G’’ between 8.653 Pa and 323.986 Pa, it is rational to make 
R approaching 0.307 and PS approaching 27,850.340 μm2 while 
ensuring that the independent effects of each physicochemical 
property are not significantly weakened.

3.5.3. Interactive effect analysis of SR with other properties

Figure 9 depicts the interactions of other features with 
SR. Unexpectedly, none of the features exhibited obvious 
interactions with SR on the test set (Figures 9A-F). This 
indicates that SR is generally regarded as an independent 
element in the process of enhancing the synergistic effects of 
physicochemical properties for promoting M2 polarization.

3.5.4. Interactive effect analysis of G’ with other properties

Figure 10 demonstrates the interactions of other features 
with G’. Among these features, IT, P, G’’, SR, and R did 

Figure 8. Dependence plot of SHAP value for loss modulus interacting with (A) incubation time, (B) porosity, (C) swelling ratio, (D) storage modulus, 
(E) roughness, and (F) pore size, reflecting potential interaction effects on M2 polarization of other physicochemical properties with loss modulus. 
Abbreviation: SHAP: Shapley additive explanations.
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not exhibit obvious interactions with G’ on the test set 
(Figure 10A-E). Figure 10F shows that when G’ was between 
104.026 Pa and 834.586 Pa, increasing PS within the range of 
357.735 – 27,850.340 μm2 facilitated the effect of G’ on M2 
polarization.

These results suggest that PS has an interactive effect with 
G’ in influencing M2 polarization within a specific value 
range. It also implies that to enhance the synergistic effects of 
physicochemical properties for promoting M2 polarization, 
especially with G’ between 104.026 Pa and 834.586 Pa, the 
optimal choice is to set PS approaches 27,850.340 μm2 while 
ensuring that the independent effects of each physicochemical 
property are not significantly weakened.

3.5.5. Interactive effect analysis of R with other properties

Figure 11 exhibits the interactions of other features with R. 
Among these features, IT, P, G’’, SR, and G’ did not exhibit 
obvious interactions with R on the test set (Figure 11A-E). 
Figure 11F shows that when R was between 0.475 and 0.532, 
decreasing PS within the range of 168.882 – 24,668.131 μm2 
enhanced the effect of R on M2 polarization.

These results suggest that PS has an interactive effect with R 
in influencing M2 polarization within a specific value range. 

Therefore, to enhance the synergistic effects of physicochemical 
properties for promoting M2 polarization with R between 
0.475 and 0.532, it is reasonable to set PS approaches 
168.882 μm2 while ensuring that the independent effects of 
each physicochemical property are not significantly weakened.

3.5.6. Interactive effect analysis of PS with other properties

Figure 12 displays the interactions of other features 
with PS. Among these features, IT, P, G’’, and R did 
not exhibit obvious interactions with PS on the test set 
(Figure 12A-C, and F). Figure 12D demonstrates that when 
PS was between 88.923 μm2 and 388.427 μm2, decreasing SR 
within the range of 8.372 – 1,804.511% enhanced the effect of 
PS on M2 polarization. Figure 12E shows that when PS was 
between 88.923 μm2 and 357.735 μm2, decreasing G’ within 
the range of 505.067 – 6,910.891 Pa enhanced the effect of PS 
on M2 polarization.

These results suggest that SR and G’ have interactive effects 
with PS in influencing M2 polarization within specific value 
ranges. Therefore, to enhance the synergistic effects of 
physicochemical properties for promoting M2 polarization 
with PS between 88.923 μm2 and 357.735 μm2, it is encouraged 
to set SR approaches 8.372% and G’ approaches 505.067 Pa 

Figure 9. Dependence plots of SHAP values of swelling ratio interacting with (A) incubation time, (B) porosity, (C) loss modulus, (D) storage modulus, 
(E) roughness, and (F) pore size, reflecting potential interaction effects on M2 polarization of other physicochemical properties with swelling ratio.
Abbreviation: SHAP: Shapley additive explanations.
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while ensuring that the independent effects of each property 
are not significantly weakened.

Overall, the specific ranges of all properties interacting with 
others to promote M2 polarization are listed, serving as another 
basis for enhancing the synergistic effects of physicochemical 
properties in hydrogel scaffolds.

3.6. Proposal of the IML-OPP strategy

As analyzed above, the importance ranking, independent 
effects, and interactive effects of the physicochemical properties 
in hydrogel scaffold on M2 polarization under the optimal 
RF model have been clearly demonstrated. Based on this, the 
IML-OPP strategy was proposed to enhance the synergistic 
effects of physicochemical properties. In summary, under 
different manufacturing conditions or application scenarios, 
the optimization process should be conducted step by step based 
on the importance ranking of the physicochemical properties. 
While optimizing each physicochemical property, both the 
independent and interactive effects must be considered in 
sequence to enhance M2 polarization comprehensively. This 
approach ensures that the potential rise in synergistic effects 
between properties does not come at the cost of diminishing 

the independent effect of any single property, which could 
weaken the overall M2 polarization level. Ultimately, the 
various combinations of physicochemical properties, selected 
according to these principles, should be normalized and input 
into the optimal RF model, with multiple IT time points taken 
into account. This will allow for the preferential selection of 
combinations that can maintain the M2 polarization phenotype 
for longer periods.

To apply the strategy, suppose there was a demand to prepare 
a hydrogel scaffold with approximately 50% P and the function 
to promote M2 polarization. The first step was to consider 
optimizing the physicochemical property G’’, which has a 
higher importance ranking. For the independent effect of G’’, 
a decrease in its value significantly promoted M2 polarization 
when it fell between 839.599 Pa and 1,645.570 Pa. In addition, 
when P was set to 50%, increasing G’’ within the range of 8.653 
Pa – 839.599 Pa enhanced the promoting effect of P on M2 
polarization. Considering both the independent and interactive 
effects, the optimal value for G’’ was 839.599 Pa.

Once G’’ was determined, the second property to optimize was 
SR. For the independent effect of SR, 377.815% was the value 
that maximized its effect on M2 polarization. Since there were 

Figure 10. Dependence plots of SHAP values of storage modulus interacting with (A) incubation time, (B) porosity, (C) loss modulus, (D) swelling ratio, 
(E) roughness, and (F) pore size, reflecting potential interaction effects on M2 polarization of other physicochemical properties with storage modulus.
 Abbreviation: SHAP: Shapley additive explanations.
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no significant interactions between SR and other properties, 
the optimal value for SR was set to 377.815%.

The third property to optimize was G’ due to its importance 
ranking. When its value was between 104.026 Pa and 2,175.141 
Pa, increasing G’ tended to promote M2 polarization. On the 
other hand, when P was at 50%, increasing G’ in the range of 
104.026 Pa – 6,910.891 Pa tended to enhance the effect of P 
on M2 polarization. Notably, the independent effect of G’ and 
its interaction with P showed a degree of conflict, indicating 
that further numerical testing was necessary to determine the 
optimal value. Therefore, G’ was provisionally set to 2,175.141 
Pa or 6,910.891 Pa, pending further evaluation using the 
optimal RF model.

As the fourth in the importance ranking, R was optimized 
subsequently. When it was between 0.307 and 0.654, decreasing 
R inclined to promote M2 polarization. Given that there is no 
significant interaction between R and other physicochemical 
properties under the current conditions, the value of R was set 
to 0.307.

Finally, the determination of PS completed the optimization 
process. Interestingly, although PS contributed less to M2 

polarization independently, it exhibited interactions with 
multiple physicochemical properties, leading to variable 
interactive effects depending on the context. Given the 
complexity of its relationship with M2 polarization, the 
inflection point of its independent effect, 168.882 μm2, 
was selected as the optimal value. This choice balanced the 
independent and interactive effects of PS, thereby minimizing 
any potential negative impact on M2 polarization.

After determining the values for the six physicochemical 
properties, the combinations with two candidate G’ values were 
matched with six IT values – 12 h, 24 h, 48 h, 72 h, 96 h, and 168 h 
– resulting in 12 feature combinations. These combinations 
were normalized and input into the optimal RF model for 
prediction. Based on the comparison of target classes, the optimal 
combinations could be selected. Notably, all 12 combinations 
were predicted to achieve target 2, indicating that under the 
constraint of P being 50%, the optimized physicochemical 
property combinations of hydrogel scaffolds were capable of 
promoting M2 polarization synergistically for a long duration.

Similarly, two other optimized combinations were provided 
as examples under conditions where two or three properties 
were limited. For example, if G’ was set at 2,000 Pa and G’’ 

Figure 11. Dependence plots of SHAP values of roughness interacting with (A) incubation time, (B) porosity, (C) loss modulus, (D) swelling ratio, 
(E) storage modulus, and (F) pore size, reflecting potential interaction effects on M2 polarization of other physicochemical properties with roughness.
Abbreviation: SHAP: Shapley additive explanations.
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at 500 Pa, the optimal values for other properties, calculated 
based on the IML-OPP strategy, were determined as follows: 
P: 81.468%, SR: 377.815%, R: 0.307, and PS: 168.882 μm2. In 
another case, when SR was limited to 1,000%, R to 0.5, and 
PS to 100 μm2, the optimal values of other properties were as 
follows: P: 81.468%, G’: 2,175.141 Pa, and G’’: 839.599 Pa.

As presented in Table 3, three combinations of physicochemical 
properties were provided as examples, confirming the 
robustness and universality of the IML-OPP strategy.

4. Discussion

Given the complexity and independence of various biomedical 
issues, a method that can precisely, efficiently, and uniformly 
address synergistic multi-factor interactions has long been 
lacking. Traditional methods, such as one-factor orthogonal 
experiments, have inherent limitations when conducting 
multi-factor comparisons with synergistic effects, often 
leading to tremendous time and effort consumption. As 
a result, there is an urgent need for novel methods. IML, 
a modeling method of information technology to explain 
relationships among multiple factors in quantification, has 
drawn significant attention in many fields nowadays.18 In 
biomedicine, IML holds a promise to address multi-factor 
biomedical issues in a fast, accurate, and uniform manner. For 

example, IML has been used to identify the comprehensive 
hazard level of multiple risk factors and define thresholds for 
the onset, progression, and regression of epidemic diseases. 
Its accuracy and efficiency contribute to the development of 
individualized applications of prevention schemes.29,30 Besides, 
IML is applied to construct quantitative relationships between 
overall signals of multiple images and scores reflecting levels 
of diseases in medical imaging and pathology. By leveraging 
IML, images can more accurately identify lesions and exclude 
suspicious signals, thus reducing misdiagnosis and the rates 
of overlooked conditions.31 Moreover, IML has been utilized 
to explain how multiple manufacturing processes, such as 
the concentrations of components, collectively influence 
scaffold properties, including stiffness, degradation rate, and 
antibacterial ability. This provides a standardized framework 
for specific scaffold design.32,33 As discussed, IML’s ability to 
illustrate the synergistic effects of multiple factors on specific 
biomedical outcomes highlights its potential application in 
addressing the unresolved issue of enhancing the synergistic 
effects of multiple physicochemical properties in hydrogel 
scaffolds on M2 polarization.

To employ IML to enhance the synergistic effects of multiple 
properties on M2 polarization, the IML-OPP strategy was 
developed in this study. Unlike the conventional practice 

Figure 12. Dependence plots of SHAP values of pore size interacting with (A) incubation time, (B) porosity, (C) loss modulus, (D) swelling ratio, 
(E) storage modulus, and (F) roughness, reflecting potential interaction effects on M2 polarization of other physicochemical properties with pore size.
Abbreviation: SHAP: Shapley additive explanations.
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in IML-related research, where a single IML model was 
constructed, assessed, and interpreted in a relatively intuitive 
manner, this strategy incorporated both the comparison 
among multiple models and the interpretation based on the 
SHAP algorithm for the 1st time in the context of scaffold 
design in tissue engineering. As shown in Figures 3 and 4, the 
comparison among multiple models was performed to select 
the most suitable IML models for capturing the relationship 
between physicochemical properties and M2 polarization 
levels. Subsequently, the interpretation based on the SHAP 
algorithm was employed to derive optimized combinations 
through expected target classes, as illustrated in Figures 5-12. 
Without any of the two steps, the IML-OPP strategy could 
not be successfully established. Furthermore, the sequential 
execution of these two steps could be extended to constructing 
other relationships between scaffold parameters and 
cellular behaviors in tissue engineering, offering a universal 
methodological solution for the quantitative design of tissue 
engineering scaffolds from the perspective of methodological 
innovation.

Besides the methodological innovation by the construction of 
the IML-OPP strategy, this work stands out in its comprehensive 
measurement of M2 polarization compared with most current 
studies investigating macrophage polarization. As is universally 
acknowledged, there are various molecular indicators for M2 
polarization, including surface antigens, secreting proteins, 
and intracellular enzymes, all of which can represent the levels 
of polarization.2 However, researchers often select different 
indicators based on specific experimental conditions and 
preferences, and even the same indicator may be measured 
using different techniques across laboratories. Therefore, it is 
challenging to perform horizontal comparisons among studies 
to assess differing levels of M2 polarization. To address this 
challenge, this study employed a standardized measurement 
of M2 polarization across all samples derived from different 
initial studies, enabling a comprehensive and standardized 
comparison. As described in the section data preprocessing, 
indicators obtained from different experimental techniques 
were normalized into classes to eliminate disparities arising 
from measurement variability. Moreover, by averaging the 
classes of diverse indicators representing polarization levels, 
the analysis reduced the influence of missing or outlier 
values. Importantly, the inclusion of M1-related indicators, 
whose trends typically oppose those of M2-related indicators, 
further enhanced the generalizability of the assessment of M2 
polarization. From an application point of view, this integrated 
consideration of M1 and M2 indicators provides a more 
holistic view of the inflammatory status within the post-injury 
microenvironment in vivo, thereby enhancing the clinical 
translational potential of hydrogel scaffolds designed using the 
IML-OPP strategy.

The construction and application framework of the IML-OPP 
strategy is universal. In a narrower context, considering that 
the six physicochemical properties investigated are commonly 
present across hydrogel scaffolds, and that the selected ML 
models are well-established in the biomedical field, this 
systematic framework can readily be applied to quantify 

relationships between physicochemical properties of hydrogel 
scaffolds and a range of cytological features, such as macrophage 
M1 polarization levels, stem cell proliferative capacity, or even 
in vivo indices like antibacterial efficacy.34-38 This approach 
enables the formulation of IML-guided optimization strategies 
to address the combinatorial effects of physicochemical 
properties on specific cytobiological behaviors.

From a broader methodological perspective, the comprehensive 
workflow established in this study – encompassing public data 
collection, dataset construction, model training and comparison, 
interpretability analysis, and optimization strategy development 
– holds significant potential for wider application. Indeed, this 
framework is not limited to studies of the physicochemical 
properties of hydrogel scaffolds. Provided that the reliability 
of original research, representativeness of sample selection, 
and rationality of data processing are rigorously upheld, this 
framework could be extended to other types of scaffolds or 
expanded to include additional factors influencing cytological 
characteristics – such as scaffold material composition, 
synthesis protocols, and incorporation of bioactive factors. 
Such modifications would not compromise the methodological 
integrity or impede the progression of the study.

In addition, it is worth noting that the IML-OPP strategy has 
the potential for future upgrades. This is primarily because the 
optimal IML model proposed in this study can be continuously 
optimized over time. Unlike conventional IML-related studies 
in tissue engineering, where training data are mainly acquired 
from experiments conducted by the researcher team, this study, 
as illustrated in Figure 2, constructed its dataset from a wide 
range of public literature. This approach not only enhances 
the generalization of the IML models but also provides 
opportunities for future data integration. As research on 
leveraging the physicochemical properties of hydrogel scaffolds 
to promote M2 polarization continues to expand, additional 
samples will become available for inclusion in the dataset 
applied in the ML models. The continuous emergence of new 
samples is expected to facilitate further improvements in data 
mining, feature selection, and target assignment, providing 
ongoing impetus for updating the IML-OPP strategy.

With regard to study limitations, firstly, the data collection 
process in this study was inherently subject to selection bias 
due to its complete dependence on literature. To mitigate 
this, the dataset was carefully curated to maximize diversity 
and representativeness by including a broad range of samples. 
Furthermore, samples exhibiting significant variations in 
confounding factors unrelated to physicochemical properties 
were systematically excluded based on a rigorous review of 
the literature. However, it was important to recognize that 
potential bias may persist due to ambiguities in literature 
descriptions, subjective tendencies of data collectors, 
and variations in experimental conditions across studies. 
Consequently, while the quantitative model and optimization 
strategies proposed in this study demonstrated promising 
predictive capabilities, their performances could be further 
enhanced. Nevertheless, although the limitation of selection 
bias was inevitable, the methodological innovation in the 
construction and application of the IML-OPP strategy was 
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Table 1. General description for 21 interpretable machine learning models

Model Strengths Weaknesses Hyperparameters to be optimized

KNN39 Simple principle, suitability for 
multi-classification problems, insensitivity 
to outliers

Complex calculation, high requirements for 
memory and data distribution

‘n_neighbors’
‘weights’
‘distance’

XGBoost40 Parallel computing, fast training, accurate 
prediction, good feature interpretability

Complex parameter tuning, sensitivity to outliers, 
tendency to overfitting in small sample datasets

‘learning_rate’
‘max_depth’
‘n_estimators’

CatBoost41 Excellent performance on processing 
large-scale datasets with categorical features

Requirements for large computing resources, 
sensitivity to outliers

‘depth’
‘iterations’
‘learning_rate’

LGBM 
classifier42

Improved scalability and accuracy compared 
to traditional tree-boosting algorithms

Poor interpretability, tendency to overfitting, 
difficulty in incremental training

‘colsample_bytree’
‘learning_rate’
‘n_estimators’
‘subsample’

DT43 Facility in understanding and interpretation, 
simple data preprocessing, ability to learn 
non-linear relationships

Sensitivity to noise, tendency to overfitting ‘criterion’
‘max_depth’
‘min_samples_leaf’
‘min_samples_split’

RF44 High accuracy, strong robustness, wide 
applicability

Complex model, difficulty in interpreting, long 
training time

‘max_depth’
‘min_samples_leaf’ ‘min_samples_split’
‘n_estimators’

Extra trees45 Reduction in model variance, low 
overfitting risk, improved model robustness

Model instability from excessive randomness, 
increased risk of underfitting

‘max_depth’ ‘min_samples_leaf’
‘min_samples_split’
‘n_estimators’

RGF classifier46 Excellent performance on high-dimensional 
and large-scale datasets, high accuracy and 
robustness, low memory consumption, 
simple parameter tuning

Slow training speed, long prediction time, poor 
performance on non-linear problems

‘algorithm’
‘l2’
‘max_leaf’
‘min_samples_leaf’

NN47 Strong adaptability, high flexibility, and 
good generalization ability

Poor interpretability, high overfitting risk, 
difficulty in hyperparameter adjustment

‘lr’
‘hidden_size’
‘Batch size’
‘Activation function’
‘num_epochs’
‘Stochastic optimization’

Logistic 
regression48

Strong interpretability, output form of 
probability, suitability for sparse data

Poor performance on handling non-linear 
problems, tendency to underfitting on complex 
data structures

‘C’
‘penalty’: ‘l2’

SVM49 Good generalization ability, strong 
robustness, suitability for high-dimensional 
space and linearly separable problems

High computational complexity, large memory 
consumption, unsuitability for complex, 
non-linear, large-scale, and multi-class 
problems

‘C’
‘gamma’
‘kernel’

Linear SVC49 low memory footprint, simple parameter 
adjustments

Poor performance on non-linear and non-convex 
feature space cases

‘C‘
‘loss’
‘penalty’

LDA50 Low computational cost, low overfitting 
risk, suitability for linear high-dimensional 
datasets

Poor performance on non-linear, non-Gaussian, 
and unbalanced class datasets

‘shrinkage’
‘solver’

QDA51 Flexibility in fitting non-linear relationships High requirements for parameter estimation, 
sensitivity to outliers, poor performance on small 
samples, high computational complexity, difficulty 
in handling high-dimensional data

‘reg_param’

Label 
propagation52

Model independent of feature space, ability 
to achieve overall prediction with a small 
number of real-labeled samples, strong 
scalability for large-scale datasets

Limitation in graph structure selection and 
handling of isolated nodes

‘gamma’
‘kernel’
‘n_neighbors’

GPC53 Superiority in uncertainty estimation, 
good performance on small samples and 
non-linear problems

High computational complexity, unsuitability for 
large-scale complex datasets, poor performance 
on high-dimensional space

‘kernel’

Ridge 
classifier54

Good interpretability, suitability for 
handling overfitting and collinearity 
problems

Unsuitability for sparse datasets, high 
requirements for data distribution

‘alpha’
‘solver’

 (Cont’d...)
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Table 1. (Continued)

Model Strengths Weaknesses Hyperparameters to be optimized

MLP 
Classifier47

Strong fitting ability, high adaptability, 
excellent performance on handling 
large-scale and complex data, facility in 
multi-classification problems

High requirements for size and hyperparameter 
adjustment, poor interpretability

‘alpha’
‘hidden_layer_sizes’

Gaussian NB55 Suitability for high-dimensional and 
small-scale datasets with missing values

Limitation in independence assumptions and 
distribution requirements, difficulty in handling 
feature correlations, tendency to prediction bias 
on unbalanced classes

‘var_smoothing’

Bernoulli NB56 Suitability for sparse data and text 
classification processing

Difficulty in handling interactions between 
features, limitation in independence assumptions 
and distribution requirements

‘alpha’
‘binarize’
‘fit_prior’

PAC57 Ability to gradually adapt to new data 
without repeated model training

Performance depends on parameter selection, 
tendency to overfitting with continuous addition 
of new data

‘C’
‘fit_intercept’

Abbreviations: Bernoulli NB: Bernoulli Naive Bayes; CatBoost: Categorical boosting; DT: Decision tree; Extra Trees: Extremely randomized trees; Gaussian NB: Gaussian Naive 
Bayes; GPC: Gaussian process classifier; KNN: K-nearest neighbors; LDA: Linear discriminant analysis; LGBM: Light gradient boosting machine; Linear SVC: Linear support vector 
classification; MLP: Multi-layer perceptron; NN: Neural network; PAC: Passive aggressive classifier; QDA: Quadratic discriminant analysis; RF: Random forest; RGF: Regularized 
greedy forest; SVM: Support vector machine; XGBoost: Extreme gradient boosting.

Table 2. (Continued)

Model Optimized hyperparameters

LDA ‘shrinkage’: ‘auto’,
‘solver’: ‘lsqr’

QDA ‘reg_param’: 0.0
Label propagation ‘gamma’: 0.1,

‘kernel’: ‘knn’,
‘n_neighbors’: 3

GPC ‘kernel’: RBF (length_scale=1)
Ridge CLassifier ‘alpha’: 0.1,

‘solver’: ‘auto’
MLP classifier ‘alpha’: 0.0001,

‘hidden_layer_sizes’: (50,50)
Gaussian NB ‘var_smoothing’: 1e-09
Bernoulli NB ‘alpha’: 0.1,

‘binarize’: 0.5,
‘fit_prior’: False

PAC ‘C’: 1,
‘fit_intercept’: False

Abbreviations: Bernoulli NB: Bernoulli Naive Bayes; CatBoost: Categorical boosting; 
DT: Decision tree; Extra Trees: Extremely randomized trees; Gaussian NB: Gaussian 
Naive Bayes; GPC: Gaussian process classifier; KNN: K-nearest neighbors; LDA: Linear 
discriminant analysis; LGBM: Light gradient boosting machine; Linear SVC: Linear 
support vector classification; MLP: Multi-layer perceptron; NN: Neural network; 
PAC: Passive aggressive classifier; QDA: Quadratic discriminant analysis; 
RF: Random forest; RGF: Regularized greedy forest; SVM: Support vector machine; 
XGBoost: Extreme gradient boosting.

Table 2. Outcomes of hyperparameter optimization for 21 
interpretable machine learning models

Model Optimized hyperparameters

KNN ‘n_neighbors’: 3,
‘weights’: ‘uniform’

XGBoost ‘learning_rate’: 0.01,
‘max_depth’: 3,
‘n_estimators’: 50

CatBoost ‘depth’: 4,
‘iterations’: 50,
‘learning_rate’: 0.2

LGBM classifier ‘colsample_bytree’: 0.8,
‘learning_rate’: 0.01,
‘n_estimators’: 50,
‘subsample’: 0.8

DT ‘criterion’: ‘entropy’,
‘max_depth’: None,
‘min_samples_leaf’: 1,
‘min_samples_split’: 2

RF ‘max_depth’: None,
‘min_samples_leaf’:1,
‘min_samples_split’: 2,
‘n_estimators’: 50

Extra Trees ‘max_depth’: None,
‘min_samples_leaf’: 2,
‘min_samples_split’: 10,
‘n_estimators’: 200

RGF classifier ‘algorithm’: ‘RGF’,
‘l2’: 0.1,
‘max_leaf’: 1000,
‘min_samples_leaf’: 10

NN ‘lr’: 0.001,
‘hidden_size’: 64,
‘Batch size’: 64,
‘num_epochs’: 10

Logistic regression ‘C’: 10,
‘penalty’: ‘l2’

SVM ‘C’: 10,
‘gamma’: ‘scale’,
‘kernel’: ‘linear’

Linear SVC ‘C’: 1,
‘loss’: ‘squared_hinge’,
‘penalty’: ‘l2’

 (Cont’d...)

significant. Based on the framework of IML-OPP, it can be 
anticipated that reducing selection bias will require expanding 
the sample size and improving dataset consistency, which will 
depend on the continuous generation of high-quality primary 
research data.

In addition, potential bias arose from the diversity of original 
research methods used to generate the target data. As outlined 
in the methodology section, to maximize the scale of the 
dataset, samples included in this study were derived from 
multiple M2 polarization evaluation methods, including WB, 
qPCR, FC, and ELISA. In general, these methods measure the 
contents of the same substances and usually show consistent 
expression trends. However, although these methods exhibit 
a certain degree of correlation in reflecting the overall trend 
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of macrophage polarization, diversity among them exists. 
Specifically, ELISA is widely recognized for its precision and 
reproducibility in quantifying trace amounts of proteins. In 
contrast, WB, qPCR, and FC being semi-quantitative methods 
with relatively lower measurement accuracy and more complex 
experimental procedures, may yield fluctuating quantitative 
results. Given the need for a sample size as large as possible, 
generating a comprehensive index to evaluate M2 polarization 
was the best option, although it inevitably introduced bias. 
Nevertheless, this bias was acceptable due to rational statistical 
processing. Specifically, various classification labels were 
assigned to samples based on their corresponding evaluation 
methods to facilitate the definition of different polarization 
levels. Furthermore, by averaging the results across methods, 
the variations among evaluation techniques were balanced, 
ensuring that the classification labels for each sample were more 
generalizable and representative. Indeed, the comprehensive 
evaluation methods employed in this study played a critical 
role in developing the optimization strategy.

Three optimized combinations of physicochemical properties 
were provided as examples to demonstrate how to use the 
IML-OPP strategy in hydrogel scaffold design. These examples 
showed how, under the conditions of one, two, or three 
properties being confined, the other properties should be 
orderly determined with balanced independent and interactive 
effects. In this way, the robustness and universality of the IML-
OPP strategy were validated. It is anticipated that the strategy 
will assist in the efficient and precise design of hydrogel 
scaffolds in the future, thereby improving the synergistic 
effects of physicochemical properties on M2 polarization.

5. Conclusions

In this study, three optimized combinations of physicochemical 
properties in hydrogel scaffolds were provided using a novel 
strategy called IML-OPP. The IML-OPP strategy offers innovative 
and comprehensive theoretical guidance for designing hydrogel 
scaffolds that promote M2 polarization, thereby facilitating the 
clinical translation of these hydrogel scaffolds.
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